Что такое lvm при установке linux
Logical Volume Manager (LVM) is a device mapper framework that provides logical volume management for the Linux kernel.
Background
LVM building blocks
Logical Volume Management utilizes the kernel’s device-mapper feature to provide a system of partitions independent of underlying disk layout. With LVM you abstract your storage and have «virtual partitions», making extending/shrinking easier (subject to potential filesystem limitations).
Virtual partitions allow addition and removal without worry of whether you have enough contiguous space on a particular disk, getting caught up fdisking a disk in use (and wondering whether the kernel is using the old or new partition table), or, having to move other partitions out of the way.
Basic building blocks of LVM:
Physical volume (PV) Unix block device node, usable for storage by LVM. Examples: a hard disk, an MBR or GPT partition, a loopback file, a device mapper device (e.g. dm-crypt). It hosts an LVM header. Volume group (VG) Group of PVs that serves as a container for LVs. PEs are allocated from a VG for a LV. Logical volume (LV) «Virtual/logical partition» that resides in a VG and is composed of PEs. LVs are Unix block devices analogous to physical partitions, e.g. they can be directly formatted with a file system. Physical extent (PE) The smallest contiguous extent (default 4 MiB) in the PV that can be assigned to a LV. Think of PEs as parts of PVs that can be allocated to any LV.
Advantages
LVM gives you more flexibility than just using normal hard drive partitions:
- Use any number of disks as one big disk.
- Have logical volumes stretched over several disks.
- Create small logical volumes and resize them «dynamically» as they get filled up.
- Resize logical volumes regardless of their order on disk. It does not depend on the position of the LV within VG, there is no need to ensure surrounding available space.
- Resize/create/delete logical and physical volumes online. File systems on them still need to be resized, but some (such as ext4) support online resizing.
- Online/live migration of LV being used by services to different disks without having to restart services.
- Snapshots allow you to backup a frozen copy of the file system, while keeping service downtime to a minimum.
- Support for unlocking separate volumes without having to enter a key multiple times on boot (make LVM on top of LUKS).
- Built-in support for caching of frequently used data ( lvmcache(7) ).
Disadvantages
- Additional steps in setting up the system, more complicated. Requires (multiple) daemons to constantly run.
- If dual-booting, note that Windows does not support LVM; you will be unable to access any LVM partitions from Windows. 3rd Party software may allow to mount certain kinds of LVM setups. [1]
- If your physical volumes are not on a RAID-1, RAID-5 or RAID-6 losing one disk can lose one or more logical volumes if you span (or extend) your logical volumes across multiple non-redundant disks.
- You cannot (easily) shrink the space used by the logical volume manager, meaning the physical volumes used for the logical volumes. If the physical extents are scattered across the physical volume until the end, it is not possible to shrink the physical volume with the scripts provided on the Arch Wiki. If you want to dual-boot with other operating systems (e.g. with Microsoft Windows), the only space left on the device for Microsoft Windows is the space not used by LVM / not used as physical volume.
Installation
Make sure the lvm2 package is installed.
If you have LVM volumes not activated via the initramfs, enable lvm2-monitor.service , which is provided by the lvm2 package.
Volume operations
Physical volumes
Creating
To create a PV on /dev/sda1 , run:
You can check the PV is created using the following command:
Growing
After extending or prior to reducing the size of a device that has a physical volume on it, you need to grow or shrink the PV using pvresize(8) .
To expand the PV on /dev/sda1 after enlarging the partition, run:
This will automatically detect the new size of the device and extend the PV to its maximum.
Shrinking
To shrink a physical volume prior to reducing its underlying device, add the —setphysicalvolumesize size parameters to the command, e.g.:
The above command may leave you with this error:
Indeed pvresize will refuse to shrink a PV if it has allocated extents after where its new end would be. One needs to run pvmove beforehand to relocate these elsewhere in the volume group if there is sufficient free space.
Move physical extents
Before moving free extents to the end of the volume, one must run pvdisplay -v -m to see physical segments. In the below example, there is one physical volume on /dev/sdd1 , one volume group vg1 and one logical volume backup .
One can observe FREE space are split across the volume. To shrink the physical volume, we must first move all used segments to the beginning.
Here, the first free segment is from 0 to 153600 and leaves us with 153601 free extents. We can now move this segment number from the last physical extent to the first extent. The command will thus be:
- This command moves 399668 — 307201 + 1 = 92468 PEs from the last segment to the first segment. This is possible as the first segment encloses 153600 free PEs, which can contain the 92467 — 0 + 1 = 92468 moved PEs.
- The —alloc anywhere option is used as we move PEs inside the same partition. In case of different partitions, the command would look something like this:
- This command may take a long time (one to two hours) in case of large volumes. It might be a good idea to run this command in a tmux or GNU Screen session. Any unwanted stop of the process could be fatal.
- Once the operation is complete, run fsck to make sure your file system is valid.
Resize physical volume
Once all your free physical segments are on the last physical extents, run vgdisplay with root privileges and see your free PE.
Then you can now run again the command:
Resize partition
Last, you need to shrink the partition with your favorite partitioning tool.
Volume groups
Creating a volume group
To create a VG MyVolGroup with an associated PV /dev/sdb1 , run:
You can check the VG MyVolGroup is created using the following command:
You can bind multiple PVs when creating a VG like this:
Activating a volume group
By default, this will reactivate the volume group when applicable. For example, if you had a drive failure in a mirror and you swapped the drive; and ran (1) pvcreate , (2) vgextend and (3) vgreduce —removemissing —force .
Repairing a volume group
To start the rebuilding process of the degraded mirror array in this example, you would run:
You can monitor the rebuilding process (Cpy%Sync Column output) with:
Deactivating a volume group
This will deactivate the volume group and allow you to unmount the container it is stored in.
Renaming a volume group
Use the vgrename(8) command to rename an existing volume group.
Either of the following commands renames the existing volume group MyVolGroup to my_volume_group
Make sure to update all configuration files (e.g. /etc/fstab or /etc/crypttab ) that reference the renamed volume group.
Add physical volume to a volume group
You first create a new physical volume on the block device you wish to use, then extend your volume group
This of course will increase the total number of physical extents on your volume group, which can be allocated by logical volumes as you see fit.
Remove partition from a volume group
If you created a logical volume on the partition, remove it first.
All of the data on that partition needs to be moved to another partition. Fortunately, LVM makes this easy:
If you want to have the data on a specific physical volume, specify that as the second argument to pvmove :
Then the physical volume needs to be removed from the volume group:
Or remove all empty physical volumes:
For example: if you have a bad disk in a group that cannot be found because it has been removed or failed:
And lastly, if you want to use the partition for something else, and want to avoid LVM thinking that the partition is a physical volume:
Logical volumes
Creating a logical volume
To create a LV homevol in a VG MyVolGroup with 300 GiB of capacity, run:
or, to create a LV homevol in a VG MyVolGroup with the rest of capacity, run:
The new LV will appear as /dev/MyVolGroup/homevol . Now you can format the LV with an appropriate file system.
You can check the LV is created using the following command:
Renaming a logical volume
To rename an existing logical volume, use the lvrename(8) command.
Either of the following commands renames logical volume old_vol in volume group MyVolGroup to new_vol .
Make sure to update all configuration files (e.g. /etc/fstab or /etc/crypttab ) that reference the renamed logical volume.
Resizing the logical volume and file system in one go
Extend the logical volume mediavol in MyVolGroup by 10 GiB and resize its file system all at once:
Set the size of logical volume mediavol in MyVolGroup to 15 GiB and resize its file system all at once:
If you want to fill all the free space on a volume group, use the following command:
See lvresize(8) for more detailed options.
Resizing the logical volume and file system separately
For file systems not supported by fsadm(8) will need to use the appropriate utility to resize the file system before shrinking the logical volume or after expanding it.
To extend logical volume mediavol within volume group MyVolGroup by 2 GiB without touching its file system:
Now expand the file system (ext4 in this example) to the maximum size of the underlying logical volume:
To reduce the size of logical volume mediavol in MyVolGroup by 500 MiB, first calculate the resulting file system size and shrink the file system (ext4 in this example) to the new size:
When the file system is shrunk, reduce the size of logical volume:
To calculate the exact logical volume size for ext2, ext3, ext4 file systems, use a simple formula: LVM_EXTENTS = FS_BLOCKS × FS_BLOCKSIZE ÷ LVM_EXTENTSIZE .
Passing —resizefs will confirm that the correctness.
See lvresize(8) for more detailed options.
Removing a logical volume
First, find out the name of the logical volume you want to remove. You can get a list of all logical volumes with:
Next, look up the mountpoint of the chosen logical volume:
Then unmount the filesystem on the logical volume:
Finally, remove the logical volume:
Confirm by typing in y .
Make sure to update all configuration files (e.g. /etc/fstab or /etc/crypttab ) that reference the removed logical volume.
You can verify the removal of the logical volume by typing lvs as root again (see first step of this section).
Snapshots
LVM supports CoW (Copy-on-Write) snapshots. A CoW snapshot initially points to the original data. When data blocks are overwritten, the original copy is left intact and the new blocks are written elsewhere on-disk. This has several desirable properties:
- Creating snapshots is fast, because it does not copy data (just the much shorter list of pointers to the on-disk locations).
- Snapshots require just enough free space to hold the new data blocks (plus a negligible amount for the pointers to the new blocks). For example, a snapshot of 35 GiB of data, where you write only 2 GiB (on both the original and snapshot), only requires 2 GiB of free space.
LVM snapshots are at the block level. They make a new block device, with no apparent relationship to the original except when dealing with the LVM tools. Therefore, deleting files in the original copy does not free space in the snapshots. If you need filesystem-level snapshots, you rather need btrfs, ZFS or bcache.
- A CoW snapshot is not a backup, because it does not make a second copy of the original data. For example, a damaged disk sector that affects original data also affects the snapshots. That said, a snapshot can be helpful while using other tools to make backups, as outlined below.
- Btrfs expects different filesystems to have different UUIDs. If you snapshot a LVM volume that contains a btrfs filesystem, make sure to change the UUID of the original or the copy, before both are mounted (or made visible to the kernel, for example if an unrelated daemon triggers a btrfs device scan). For details see btrfs wiki Gotcha’s.
Configuration
You create snapshot logical volumes just like normal ones.
With that volume, you may modify less than 100 MiB of data, before the snapshot volume fills up.
Reverting the modified lvol logical volume to the state when the snap01vol snapshot was taken can be done with
In case the origin logical volume is active, merging will occur on the next reboot (merging can be done even from a LiveCD).
Also multiple snapshots can be taken and each one can be merged with the origin logical volume at will.
Backups
A snapshot provides a frozen copy of a file system to make backups. For example, a backup taking two hours provides a more consistent image of the file system than directly backing up the partition.
The snapshot can be mounted and backed up with dd or tar. The size of the backup file done with dd will be the size of the files residing on the snapshot volume. To restore just create a snapshot, mount it, and write or extract the backup to it. And then merge it with the origin.
See Create root filesystem snapshots with LVM for automating the creation of clean root file system snapshots during system startup for backup and rollback.
alt=»Tango-view-fullscreen.png» width=»48″ height=»48″ />This article or section needs expansion. alt=»Tango-view-fullscreen.png» width=»48″ height=»48″ />
Encryption
Cache
The cache logical volume type uses a small and fast LV to improve the performance of a large and slow LV. It does this by storing the frequently used blocks on the faster LV. LVM refers to the small fast LV as a cache pool LV. The large slow LV is called the origin LV. Due to requirements from dm-cache (the kernel driver), LVM further splits the cache pool LV into two devices — the cache data LV and cache metadata LV. The cache data LV is where copies of data blocks are kept from the origin LV to increase speed. The cache metadata LV holds the accounting information that specifies where data blocks are stored (e.g. on the origin LV or on the cache data LV). Users should be familiar with these LVs if they wish to create the best and most robust cached logical volumes. All of these associated LVs must be in the same VG.
Create cache
Convert your fast disk ( /dev/fastdisk ) to PV and add to your existing VG ( MyVolGroup ):
Create a cache pool with automatic meta data on /dev/fastdisk and convert the existing LV MyVolGroup/rootvol to a cached volume, all in one step:
Cachemode has two possible options:
- writethrough ensures that any data written will be stored both in the cache pool LV and on the origin LV. The loss of a device associated with the cache pool LV in this case would not mean the loss of any data;
- writeback ensures better performance, but at the cost of a higher risk of data loss in case the drive used for cache fails.
If a specific —cachemode is not indicated, the system will assume writethrough as default.
Remove cache
If you ever need to undo the one step creation operation above:
This commits any pending writes still in the cache back to the origin LV, then deletes the cache. Other options are available and described in lvmcache(7) .
LVM may be used to create a software RAID. It is a good choice if the user does not have hardware RAID and was planning on using LVM anyway. From lvmraid(7) :
lvm(8) RAID is a way to create a Logical Volume (LV) that uses multiple physical devices to improve performance or tolerate device failures. In LVM, the physical devices are Physical Volumes (PVs) in a single Volume Group (VG).
LVM RAID supports RAID 0, RAID 1, RAID 4, RAID 5, RAID 6 and RAID 10. See Wikipedia:Standard RAID levels for details on each level.
Setup RAID
Create physical volumes:
Create volume group on the physical volumes:
Create logical volumes using lvcreate —type raidlevel , see lvmraid(7) and lvcreate(8) for more options.
will create a 20 GiB mirrored logical volume named «myraid1vol» in VolGroup00 on /dev/sda2 and /dev/sdb2 .
Thin provisioning
Blocks in a standard lvm(8) Logical Volume (LV) are allocated when the LV is created, but blocks in a thin provisioned LV are allocated as they are written. Because of this, a thin provisioned LV is given a virtual size, and can then be much larger than physically available storage. The amount of physical storage provided for thin provisioned LVs can be increased later as the need arises.
Example: implementing virtual private servers
Here is the classic use case. Suppose you want to start your own VPS service, initially hosting about 100 VPSes on a single PC with a 930 GiB hard drive. Hardly any of the VPSes will actually use all of the storage they are allotted, so rather than allocate 9 GiB to each VPS, you could allow each VPS a maximum of 30 GiB and use thin provisioning to only allocate as much hard drive space to each VPS as they are actually using. Suppose the 930 GiB hard drive is /dev/sdb . Here is the setup.
Prepare the volume group, MyVolGroup .
Create the thin pool LV, MyThinPool . This LV provides the blocks for storage.
The thin pool is composed of two sub-volumes, the data LV and the metadata LV. This command creates both automatically. But the thin pool stops working if either fills completely, and LVM currently does not support the shrinking of either of these volumes. This is why the above command allows for 5% of extra space, in case you ever need to expand the data or metadata sub-volumes of the thin pool.
For each VPS, create a thin LV. This is the block device exposed to the user for their root partition.
The block device /dev/MyVolGroup/SomeClientsRoot may then be used by a VirtualBox instance as the root partition.
Use thin snapshots to save more space
Thin snapshots are much more powerful than regular snapshots, because they are themselves thin LVs. See Red Hat’s guide [2] for a complete list of advantages thin snapshots have.
Instead of installing Linux from scratch every time a VPS is created, it is more space-efficient to start with just one thin LV containing a basic installation of Linux:
Then create snapshots of it for each VPS:
This way, in the thin pool there is only one copy the data common to all VPSes, at least initially. As an added bonus, the creation of a new VPS is instantaneous.
Since these are thin snapshots, a write operation to GenericRoot only causes one COW operation in total, instead of one COW operation per snapshot. This allows you to update GenericRoot more efficiently than if each VPS were a regular snapshot.
Example: zero-downtime storage upgrade
There are applications of thin provisioning outside of VPS hosting. Here is how you may use it to grow the effective capacity of an already-mounted file system without having to unmount it. Suppose, again, that the server has a single 930 GiB hard drive. The setup is the same as for VPS hosting, only there is only one thin LV and the LV’s size is far larger than the thin pool’s size.
This extra virtual space can be filled in with actual storage at a later time by extending the thin pool.
Suppose some time later, a storage upgrade is needed, and a new hard drive, /dev/sdc , is plugged into the server. To upgrade the thin pool’s capacity, add the new hard drive to the VG:
Now, extend the thin pool:
Since this thin LV’s size is 16 TiB, you could add another 15.09 TiB of hard drive space before finally having to unmount and resize the file system.
Troubleshooting
LVM commands do not work
- Load proper module:
The dm_mod module should be automatically loaded. In case it does not, explicitly load the module at boot.
- Try preceding commands with lvm like this:
Logical volumes do not show up
If you are trying to mount existing logical volumes, but they do not show up in lvscan , you can use the following commands to activate them:
LVM on removable media
Cause: removing an external LVM drive without deactivating the volume group(s) first. Before you disconnect, make sure to:
Fix: assuming you already tried to activate the volume group with vgchange -ay vg , and are receiving the Input/output errors:
Unplug the external drive and wait a few minutes:
Suspend/resume with LVM and removable media
alt=»Tango-inaccurate.png» width=»48″ height=»48″ />The factual accuracy of this article or section is disputed. alt=»Tango-inaccurate.png» width=»48″ height=»48″ />
In order for LVM to work properly with removable media – like an external USB drive – the volume group of the external drive needs to be deactivated before suspend. If this is not done, you may get buffer I/O errors on the dm device (after resume). For this reason, it is not recommended to mix external and internal drives in the same volume group.
To automatically deactivate the volume groups with external USB drives, tag each volume group with the sleep_umount tag in this way:
Once the tag is set, use the following unit file for systemd to properly deactivate the volumes before suspend. On resume, they will be automatically activated by LVM.
and this script:
Finally, enable the unit.
Resizing a contiguous logical volume fails
If trying to extend a logical volume errors with:
The reason is that the logical volume was created with an explicit contiguous allocation policy (options -C y or —alloc contiguous ) and no further adjacent contiguous extents are available.[3]
To fix this, prior to extending the logical volume, change its allocation policy with lvchange —alloc inherit logical_volume . If you need to keep the contiguous allocation policy, an alternative approach is to move the volume to a disk area with sufficient free extents. See [4].
Command «grub-mkconfig» reports «unknown filesystem» errors
Make sure to remove snapshot volumes before generating grub.cfg.
Thinly-provisioned root volume device times out
With a large number of snapshots, thin_check runs for a long enough time so that waiting for the root device times out. To compensate, add the rootdelay=60 kernel boot parameter to your boot loader configuration. Or, make thin_check skip checking block mappings (see [5]) and regenerate the initramfs:
Что такое LVM и для чего он используется?
Некоторые дистрибутивы Linux при установке операционной системы вместо обычного раздела предлагают выбрать LVM раздел или даже динамический LVM. Что такое LVM и для чего он используется, если вы новичок в Linux, Ubuntu?
Какие преимущества даёт установка веб-сервера на LVM раздел?
Рекомендуется ли использовать LVM или лучше обычные разделы?
Плюсы LVM
Вы можете думать о LVM как о «динамических разделах», что означает, что вы можете создавать, изменять размер, удалять «разделы» LVM (на языке LVM они называются «логическими томами») из командной строки во время работы системы Linux: нет необходимо перезагрузить систему, чтобы ядро узнало о вновь созданных разделах или разделах с измененным размером.
Другие полезные функции, которые предоставляет LVM «Logical Volumes»:
- Если у вас более одного жёсткого диска, логические тома могут охватывать более одного диска: то есть они не ограничиваются размером одного отдельного диска, а скорее общим совокупным пространством.
- Вы можете настроить «чередующиеся» LV, чтобы ввод-вывод можно было распределять на все диски, на которых размещён LV, параллельно. (Аналогично RAID-0, но немного проще в настройке.)
- Вы можете создать моментальный снимок (только для чтения) любого LV. Вы можете позже вернуть исходный LV к снимку или удалить снимок, если он вам больше не нужен. Это удобно, например, для резервного копирования серверов (вы не можете остановить запись всех своих приложений, поэтому вы создаёте моментальный снимок и делаете резервную копию снимка LV), но также это может использоваться для обеспечения «сети безопасности» перед критическим обновлением системы (клонировать корневой раздел, обновить, откатить изменения, если что-то пошло не так).
Будучи наиболее полезными в серверных системах, я думаю, что функции 1. и 3. в сочетании с возможностью LVM создавать, изменять размер, удалять LV на лету также весьма удобны в настольных системах. (Особенно, если вы много экспериментируете с системой.)
Минусы LVM
Конечно, всё это имеет свою цену: начальная настройка LVM более сложна, чем просто разбиение диска, и вам определённо необходимо понять терминологию и модель LVM (логические тома, физические тома, группы томов), прежде чем вы сможете начать его использовать. (Однако после настройки пользоваться им становится намного проще.)
Кроме того, если вы используете LVM на жёстких дисках, вы можете потерять все свои данные, когда выйдет из строя только один диск.
Что такое LVM
LVM расшифровывается как Logical Volume Management. Это система управления логическими томами или файловыми системами, которая является гораздо более продвинутой и гибкой, чем традиционный метод разделения диска на один или несколько сегментов и форматирования этого раздела с файловой системой.
Зачем использовать LVM?
В течение долгого времени я задавался вопросом, зачем кому-то использовать LVM, если вы можете использовать gparted для изменения размера и перемещения разделов. Ответ в том, что lvm может делать эти вещи лучше, а также некоторые отличные новые вещи, которые вы просто не можете сделать иначе. Я объясню несколько задач, которые может выполнять lvm, и почему он это делает лучше, чем другие инструменты, а затем как их выполнять. Сначала вы должны понять основы lvm.
Основы LVM
LVM управляет тремя концепциями:
- Группы томов
- Физические тома
- Логические тома
Группа томов — это именованный набор физических и логических томов. Типичным системам требуется только одна группа томов, чтобы содержать все физические и логические тома в системе, и мне нравится называть свою группу по имени машины. Физические тома соответствуют дискам; это блочные устройства, которые предоставляют пространство для хранения логических томов. Логические тома соответствуют разделам: они содержат файловую систему. Однако, в отличие от разделов, логические тома получают имена, а не номера, они могут занимать несколько дисков и необязательно должны быть физически смежными.
Специфика LVM
Одно из самых больших преимуществ LVM заключается в том, что большинство операций можно выполнять «на лету», пока система работает. Большинство операций, которые вы можете выполнять с помощью gparted, требуют, чтобы разделы, которыми вы пытаетесь манипулировать, в данный момент не использовались, поэтому для их выполнения вам необходимо загрузиться с livecd. Вы также часто сталкиваетесь с ограничениями формата таблицы разделов msdos с gparted, включая только 4 основных раздела, и все логические разделы должны содержаться в одном непрерывном расширенном разделе.
Изменение размера разделов
С помощью gparted вы можете расширять и сжимать разделы, но только если они не используются. LVM может расширять раздел во время когда диск смонтирован, если файловая система, используемая на нём, также поддерживает это (например, обычный ext3/4). При расширении раздела gparted может расширить его только на соседнее свободное пространство, но LVM может использовать свободное пространство в любом месте группы томов, даже на другом диске. При использовании gparted это ограничение часто означает, что вы должны перемещать другие разделы, чтобы освободить место для расширения одного из них, что является очень трудоёмким процессом, который может привести к значительной потере данных в случае сбоя или прерывания работы (отключение электричества).
Перемещение разделов
Перемещение разделов с помощью gparted обычно необходимо только в первую очередь из-за требования, чтобы разделы были физически смежными, поэтому вам, вероятно, никогда не понадобится делать это с LVM. Если вы это сделаете, в отличие от gparted, LVM может перемещать раздел, пока он используется, и не повредит ваши данные, если операция будет прервана. В случае, если ваша система выйдет из строя или потеряет питание во время перемещения, вы можете просто перезапустить операцию перемещения после перезагрузки, и она завершится нормально. Когда я получил свой SSD-накопитель, я просто подключил его, загрузил и попросил lvm переместить мою работающую корневую файловую систему на новый диск в фоновом режиме, пока я продолжал работать. Другая причина, по которой вы можете захотеть переехать, — это заменить старый диск на новый, большего размера. Вы можете перенести систему на новый диск во время его использования, а затем удалить старый.
Много разделов
Если вам нравится тестировать различные дистрибутивы Linux, или просто другие версии Ubuntu, или и то, и другое приводит к созданию довольно большого числа разделов. С обычными разделами msdos (MBR) это становится проблематичным из-за его ограничений (хотя нужно отметить, что с GPT такой проблемы уже нет). С LVM вы можете создать столько логических томов, сколько захотите, и обычно это довольно просто, поскольку обычно у вас остаётся много свободного места. Обычно люди выделяют весь диск на один раздел при первой установке, но, поскольку расширение раздела с помощью LVM настолько простое, для этого нет никаких причин и вы можете начать с создания раздела не в целый диск. Лучше выделить только то, что, по вашему мнению, вам понадобится, а остальное пространство оставить свободным для использования в будущем. Если в конечном итоге исходное выделенное место закончилось, добавление дополнительного пространства к этому тому — это всего лишь одна команда, которая выполняется немедленно, пока система работает в обычном режиме.
Снимки
Это то, что вы просто не можете сделать без LVM. Это позволяет вам заморозить существующий логический том во времени в любой момент, даже когда система работает. Вы можете продолжать использовать исходный том в обычном режиме, но том с моментальным снимком выглядит как образ оригинала, застывший во времени в момент его создания. Вы можете использовать это, чтобы получить целостный образ файловой системы для резервного копирования, не выключая систему. Вы также можете использовать его для сохранения состояния системы, чтобы позже можно было вернуться в это состояние, если вы что-то напутали. Вы даже можете смонтировать том моментального снимка и внести в него изменения, не затрагивая оригинал.
Как использовать LVM
Итак, как мне начать использовать LVM?
Установщик Linux может предложить вам создать раздел с LVM. Либо перед установкой Linux вы можете создать раздел LVM с помощью LIVE CD. Либо если вы планируете переустановку ОС, вы можете установить пакет lvm2 в существующую систему и вручную настроить LVM.
Во-первых, вам нужен физический том. Обычно вы начинаете с жёсткого диска и создаёте на нем раздел типа LVM. Вы можете создать его с помощью gparted или fdisk и обычно хотите, чтобы только один раздел использовал весь диск, поскольку LVM будет обрабатывать его разделение на логические тома. В gparted вам нужно проверить флаг lvm при создании раздела, а с помощью fdisk пометить тип кодом 8e.
Когда у вас есть раздел LVM, вам необходимо инициализировать его как физический том. Предполагая, что это раздел /dev/sda1:
Это записывает заголовок LVM в раздел, который идентифицирует его как физический том, и устанавливает небольшую область для хранения метаданных, описывающих всё о группе томов, а остальную часть раздела как неиспользуемые физические экстенты. После этого вам нужно создать группу томов с именем foo:
Теперь у вас есть группа томов с именем foo. Я предлагаю вам заменить foo значимым для вас именем. foo содержит только один физический том. Теперь вы хотите создать логический том из некоторого свободного места в foo:
Это создаёт логический том с именем bar в группе томов foo, используя 5 ГБ пространства. Если вы выполняете установку ОС Linux, вы, вероятно, захотите создать логический том, подобный этому, для использования в качестве корневой файловой системы, один для подкачки и, возможно, один для /home. В настоящее время у меня есть логический том для установки Lucid и один для установки Maverick, поэтому я назвал эти тома именно так. Вы можете найти блочное устройство для этого логического тома в '/dev/foo/bar' или 'dev/mapper/foo-bar'.
Вы также можете попробовать команды lvs и pvs, которые перечисляют логические тома и физические тома соответственно, а также их более подробные варианты; lvdisplay и pvdisplay.
Если вы делаете это с рабочего стола livecd, после создания логических томов из терминала вы можете запустить установщик и использовать ручное разбиение на разделы, чтобы выбрать, как использовать каждый логический том, а затем выполнить установку.
Изменение размера разделов
Вы можете расширить логический том с помощью:
Это добавит 5 ГБ к логическому тому bar в группе томов foo. Вы можете указать абсолютный размер, если хотите, вместо относительного, опуская начальный +. Пространство выделяется из любого свободного места в любом месте группы томов bar. Если у вас несколько физических томов, вы можете добавить имена одного или нескольких из них в конец команды, чтобы ограничить, какие из них следует использовать для удовлетворения запроса.
После расширения логического тома вам необходимо расширить файловую систему, чтобы использовать новое пространство. Для ext 3/4 вы просто запустите:
Перемещение разделов
Если у вас есть только один физический том, вам, вероятно, никогда не придётся перемещать его, но если вы добавите новый диск, возможно, вы захотите это сделать. Чтобы переместить логический том bar из физического тома /dev/sda1, выполните:
Если вы опустите аргумент -n bar, все логические тома на физическом томе /dev/sda1 будут перемещены. Если у вас есть только один другой физический том, то он будет перемещён туда, или вы можете добавить имя одного или нескольких конкретных физических томов, которые должны использоваться для удовлетворения запроса, вместо любого физического тома в группе томов со свободным местом. Этот процесс можно безопасно возобновить, если он прерван из-за сбоя или отключения питания, и его можно выполнить, пока используются соответствующие логические тома. Вы также можете добавить -b, чтобы выполнить перемещение в фоновом режиме и немедленно вернуться, или -i СЕКУНДЫ, чтобы он печатал, какой прогресс он сделал каждые СЕКУНДЫ секунд. Если вы выбрали фоновый режим перемещения, вы можете проверить его ход с помощью команды lvs.
Снимки
Когда вы создаёте моментальный снимок, вы создаёте новый логический том, который будет действовать как клон исходного логического тома. Том моментального снимка изначально не использует никакого пространства, но по мере внесения изменений в исходный том изменённые блоки копируются в том моментального снимка перед их изменением, чтобы сохранить их. Это означает, что чем больше изменений вы вносите в исходную точку, тем больше места требуется для снимка. Если том моментального снимка использует всё выделенное ему пространство, то моментальный снимок повреждается и больше не может использоваться, оставляя вас только с измененным источником. Команда lvs сообщит вам, сколько места было использовано в логическом томе моментального снимка. Если он начинает заполняться, вы можете расширить его с помощью команды lvextend. Чтобы создать моментальный снимок логического тома bar и назвать его snap, запустите:
Это создаст моментальный снимок с именем snap оригинального логического тома bar и выделит для него 5 ГБ пространства. Поскольку том моментального снимка хранит только те области диска, которые изменились с момента его создания, он может быть намного меньше исходного тома. Недавно я использовал моментальный снимок логического тома объёмом 12 Гбайт, содержащий мою корневую файловую систему Maverick, и выполнил dist-upgrade до Natty в источнике, который использовал только около 50-60% пространства моментального снимка.
Пока у вас есть моментальный снимок, вы можете смонтировать его, если хотите, и увидите исходную файловую систему такой, какой она была на момент создания моментального снимка. В приведённом выше примере вы должны смонтировать устройство /dev/foo/snap. Вы можете изменить снимок, не затрагивая оригинал, и изменит оригинал оригинал, не затрагивая снимок. Если вы сделаете снимок корневого логического тома, а затем обновите некоторые пакеты или целый дистрибутив до следующего выпуска, а затем решите, что вам не нравится, как он работает, вы можете объединить снимок обратно в исходный том, эффективно вернувшись к состоянию во время создания снимка. Для этого просто запустите:
Если исходный том foo/snap уже используется, он сообщит вам, что слияние произойдёт при следующей активации томов. Если это корневой том, вам необходимо перезагрузить компьютер, чтобы это произошло. При следующей загрузке том будет активирован, и слияние начнётся в фоновом режиме, поэтому ваша система загрузится так, как будто вы никогда не вносили изменений с момента создания моментального снимка, а фактическое перемещение данных будет происходить в фоновом режиме, пока вы работаете в обычном режиме.
Создание и настройка LVM Linux
LVM или Logical Volume Manager — это еще один программный уровень абстракции над физическими разделами жесткого диска, который позволяет создавать логические тома для хранения данных без непосредственной переразметки жесткого диска на одном или нескольких жестких дисках. LVM увеличивает удобство работы с жестким диском, аппаратные особенности работы скрываются программным обеспечением, поэтому вы можете изменять размеры дисков, перемещать их на лету, без остановки приложений или размонтирования файловых систем. Это очень удобно на серверах, вы можете добавить еще один диск или расширить существующие lvm тома на лету.
LVM работает на уровне ядра, поэтому гарантируется максимальная прозрачность настройки и использования дисков. Программы смогут работать с логическими, виртуальными LVM разделами, точно так же, как и с обычными.
Давайте рассмотрим преимущества использования LVM перед обычными разделами жесткого диска.
- Легкое изменение размера — вы можете расширить или уменьшить lvm раздел без переформатирования диска
- Легкая расширяемость пространства — вы можете увеличить доступное пространство просто добавляя новые физические диски в общий пул памяти LVM, таким образом, вы получаете большую гибкость.
- Резервное копирование и зеркалирование данных — возможность записи на несколько дисков одновременно позволяет увеличить производительность работы системы, а также есть возможность настроить зеркалирование данных и резервное копирование разделов для увеличения безопасности.
- Читаемые имена — вы можете давать любые имена вашим логическим разделам, так чтобы они соответствовали назначению раздела и легко запоминались.
Теперь перейдем от теории ближе к практике. Рассмотрим создание LVM, настройку и работу с дисками. Как основную операционную систему мы будем использовать Ubuntu, но данная инструкция подойдет и для любого другого дистрибутива Linux.
Создание LVM Linux
Структура LVM состоит из трех слоев:
- Физический том (один или несколько), Physical Volume (PV)
- Группа физических томов, Volume Group (VG)
- Логический том, который и будет доступен программам, Logical Volume (LV)
Перед тем как начинать создание lvm linux необходимо установить нужные для этого инструменты:
sudo apt install lvm2
Соответственно структуре LVM, нам нужно будет инициализировать физические разделы для LVM, объединить их в группу, а затем создать из этой группы нужные нам логические тома.
Инициализация физических LVM разделов
Сначала определимся с томами, которые будем использовать, допустим это будут /dev/sda6 и /dev/sda7. Инициализировать их для работы LVM можно с помощью команды pvcreate:
sudo pvcreate /dev/sda6 /dev/sda7
Чтобы посмотреть действительно ли были созданы физические тома LVM вы можете использовать команду pvscan:
Также можно посмотреть физические LVM разделы с более подробными атрибутами, такими как размер, общий размер, физический размер, свободное место и т д:
Здесь PE Size — это размер одного блока LVM, по умолчанию он равен четырем мегабайтам, но это значение можно изменить.
Создание группы разделов LVM
Группа томов — это не что иное, как пул памяти, который будет распределен между логическими томами и может состоять из нескольких физических разделов. После того как физические разделы инициализированы, вы можете создать из них группу томов (Volume Group, VG):
sudo vgcreate vol_grp1 /dev/sda6 /dev/sda7
С помощью LVM команды vgdisplay вы можете посмотреть созданные группы томов:
Создание логических томов LVM
Теперь все готово, чтобы создать логические LVM разделы. Для этого будем использовать команду lvcreate и создадим логический раздел размером 80 мегабайт, или 20 блоков LVM:
sudo lvcreate -l 20 -n logical_vol1 vol_grp1
Если вы хотите задать размер в обычных единицах измерения, то необходимо использовать опцию -L. Например, для тех же 80-ти мегабайт:
sudo lvcreate -L 80M -n logical_vol1 vol_grp1
В качестве приставки для указания размера можно использовать такие буквы:
- B — байты;
- K — килобайты;
- M — мегабайты;
- G — гигабайты;
- T — терабайты.
Посмотреть список доступных логических разделов LVM можно по аналогии с предыдущими разделами с помощью команды lvdisplay:
Теперь, когда раздел создан, мы можем работать с ним как с обычным разделом. Например, отформатируем его в файловую систему ext4, а затем примонтируем в /mnt:
sudo mkfs.ext4 /dev/vol_grp1/logical_vol1
sudo mount /dev/vol_grp1/logical_vol1 /mnt/
Как видите, монтирование LVM в Linux ничем не отличается от монтирования обычных разделов.
Вообще говоря, LVM разделы могут быть трех типов:
- Линейные разделы (Linear Volume)
- Полосные разделы (Striped Volume)
- Зеркалированные разделы (Mirrored Volume)
Линейные разделы — это обычные LVM тома, они могут быть созданы как из одного, так и из нескольких физических дисков. Например, если у вас есть два диска по 2 гигабайта, то вы можете их объединить и в результате получите один раздел LVM Linux, размером 4 гигабайта. По умолчанию используются именно линейные LVM разделы.
Полосные разделы очень полезны при больших нагрузках на жесткий диск. Здесь вы можете настроить одновременную запись на разные физические устройства, для одновременных операций, это может очень сильно увеличить производительность работы системы.
Для этого нужно задать количество полос записи с помощью опции -i, а также размер полосы опцией -l. Количество полос не должно превышать количества физических дисков. Например:
sudo lvcreate -L 1G -i 2 -n logical_vol2 vol_grp1
Зеркалированный том позволяет записывать данные одновременно на два устройства. Когда данные пишутся на один диск, они сразу же копируются на другой. Это позволяет защититься от сбоев одного из дисков. Если один из дисков испортится, то разделы LVM просто станут линейными и все данные по-прежнему будут доступны. Для создания такого раздела LVM Linux можно использовать команду:
sudo lvcreate -L 200M -m1 -n lv_mirror vol_grp1
Удалить LVM раздел
Вы можете не только настроить LVM тома изменяя их размер и атрибуты, но и удалить LVM раздел, если он вам больше не нужен. Это делается с помощью LVM команды lvremove:
sudo lvremove /dev/vol-grp1/lv_mirror
Теперь лишний раздел удален.
Изменение размера LVM тома
Вы можете изменять уже созданные разделы LVM увеличивая или уменьшая их размер. Причем неважно есть ли место на физическом диске после этого раздела, если в пуле есть память, вы можете ее использовать для любого раздела. Чтобы изменить размер LVM используйте команду lvextend. Например, LVM увеличим размер диска из 80 до 100 мегабайт:
sudo lvextend -L100 /dev/vol_grp1/logical_vol1
Extending logical volume logical_vol1 to 100.00 MB
Logical volume logical_vol1 successfully resize
Также вы можете увеличить размер LVM, использовав знак +:
sudo lvextend -L+100M /dev/vol_grp1/logical_vol1
Точно так же можно выполнить уменьшение LVM раздела с помощью знака -.
Выводы
В этой статье мы рассмотрели создание LVM разделов в linux, а также настройку, увеличение, уменьшение и монтирование LVM Linux. Теперь вы знаете насколько это мощная технология и сколько преимуществ она может дать не только на сервере, но и на домашнем ПК. Вы раньше использовали LVM? Будете использовать?
Обнаружили ошибку в тексте? Сообщите мне об этом. Выделите текст с ошибкой и нажмите Ctrl+Enter.
Настройка LVM в Linux, что такое LVM при установке Linux
На большом количестве серверов работающих под управлением Linux используются LVM, позволяющие разделять диск на логические разделы, находящиеся на два уровня выше физических. Применяются LVM особенно часто в технологиях виртуализации. LVM — logical volume manager. Рассмотрим как выполняется настройка LVM.
Суть создания блочных девайсов — они создаются без первоначального задания размеров устройств
LV можно создать из рейд массивов или из партиций на жестком диске. Партиции или рейд массивы объединятся в VG (volume group), затем из этой группы выделяются логические устройства.
Схематически структура выглядит следующим образом (светлым цветом отмены физические диски и партиции — которые могут и не выделяться, темным — группы томов, логические устройства и файловая система, созданная на них перед монтированием ):
Появляются три уровня абстрацкии: физические диски, volume groups (в которые объединяются физические диски) и logical volume. На втором и третьем уровне элементы можно объединять, увеличивать и уменьшать их размер, монтировать и отмонтировать.
Прежде всего рассмотрим создание партиций на одном из подключенных дисков — шаг можно пропустить если работа будет производиться непосредственно с дисками, но партиции использовать также удобно. При помощи партиций можно выделить разделы на дисках, которые система будет видеть как отдельные устройства. Автоматически к имени диска будут добавлены порядковые номера /dev/sdb1, /dev/sdb2 и т.д.
Инициализируем диск, с которым будем работать при помощи fdisk
Просматриваем существующую структуру разделов
Disk /dev/vdc: 5 GiB, 5368709120 bytes, 10485760 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x3aa19e91
На диске не выделено партиций, создаем новую
Partition type
p primary (0 primary, 0 extended, 4 free)
e extended (container for logical partitions
Выбираем тип партиции
Задаем номер раздела (выберется по умолчанию при нажатии ввода)
Оставляем настройки разметки диска (указание первого сектора в байтах) по умолчанию
Для последнего сектора выбираем необходимое значение, под партицию будет выделено 140 Мб, поэтому выбираем размер в байтах 824500
Задаем тип партиции
Все возможные типы партиций можно посмотреть введя L, для LVM нам потребуется тип 8e из списка. Данный код означает тип партиции Linux LVM.
Таким же образом создаем вторую партицию. Отличиями будут 824500 байт которые система предложит в качестве начального сектора для устройства, при выборе значения, определяющего конец партиции достаточно нажать Enter, под нее зарезервируется все оставшееся место на диске.
Вновь просматриваем таблицу
Disk /dev/vdb: 5 GiB, 5368709120 bytes, 10485760 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x3aa19e91
Device Boot Start End Sectors Size Id Type
/dev/vdb1 2048 824500 3350 140M 8e Linux LVM
/dev/vdb2 824500 10485759 10482410 4.86G 8e Linux LVM
Теперь нужно записать изменения на диск
На этом с созданием партиций закончено, описанный порядок действий и вводимые команды можно повторять для всех подключенных устройств.
В обязательном порядке нужно указать тип файловой системы
Проверить все ли сделано корректно можно примонтировав диски в какую-либо точку файловой системы. Например, выполнив mount -t ext4 /dev/vda1 /mnt. Затем нужно отмонитровать используя umount поскольку монтирование происходит при выполнении pvcreate в дальнейшем.
Для приведенных на иллюстрации в начале статье дисках /dev/vda и /dev/vdc таким же образом создаются партиции, процесс полностью аналогичен — первый и последний биты сектора выбирать не нужно, партиция для устройств занимает весь объем диска.
Создание логических устройств и настройка LVM в Linux
Устанавливаем необходимый для работы с LVM программный пакет
Пакет включает несколько утилит, которые используются для создания логических разделов и устройств. Сначала из только что созданных партиций создадим физические устройства, с которыми может работать LVM
Physical volume «/dev/vdb1» successfully created.
Physical volume «/dev/vdb2» successfully created.
При необходимости смотрим справку по следующей команде, которую будем использовать
Создаем логическую группу устройств, указываем ее имя и физические девайсы, которые будут в нее включены
vgcreate vg1 /dev/vdb1 /dev/vdb2 /dev/vda1 /dev/vdc1
Volume group «vg1» successfully created
Просматриваем информацию о логической группе
Среди прочего в выводе будет размер всех устройств в группе и ее UUID.
Логическая группа позволяет объединить физические тома, групп может быть несколько в каждую при этом существует возможность добавить от одного устройства или партиции.
Следующим уровнем абстракции будут логические тома, они выделяются из группы по размеру, понятия физических дисков на этом уровне уже не существует.
Создаем логические устройства указывая их размер (ключ -L) и имена (ключ -n)
Logical volume «lv1» created.
Logical volume «lv2» created.
total 0
lrwxrwxrwx 1 root root 7 окт 13 10:17 lv1 -> ../dm-0
lrwxrwxrwx 1 root root 7 окт 13 10:17 lv2 -> ../dm-1
Видим созданные логические устройства, которые видит система и может работать с ними как с отдельными дисками
На каждом нужно создать файловую систему
Создаем при необходимости точки монтирования и монтируем разделы в файловую систему
Команда выводит все логические девайсы, используемые в системе (информация предоставлена в блоках и сгруппирована по устройствам)
— Logical volume —
LV Path /dev/vg1/lv1
LV Name lv1
VG Name vg1
LV UUID VTP39y-e1Ui-Xawl-h4oQ-Ml3k-CacV-aIiERw
LV Write Access read/write
LV Creation host, time vm-2c6ce884, 2017-10-13 10:17:06 +0000
LV Status available
# open 0
LV Size 1,00 GiB
Current LE 256
Segments 1
Allocation inherit
Read ahead sectors auto
— currently set to 256
Block device 253:0
— Logical volume —
LV Path /dev/vg1/lv2
LV Name lv2
VG Name vg1
LV UUID OPik1D-p0C8-3vyh-auJb-xLbi-f625-0zffvf
LV Write Access read/write
LV Creation host, time vm-2c6ce884, 2017-10-13 10:17:31 +0000
LV Status available
# open 0
LV Size 2,00 GiB
Current LE 512
Segments 1
Allocation inherit
Read ahead sectors auto
— currently set to 256
Block device 253:1
Базовая настройка LVM в Linux на этом завершена. Далее рассмотрены операции с логическими томами, сталкиваться с которыми приходится чаще всего.
Изменение размера логических устройств
Предназначение LVM — возможность гибко работать с логическими томами, самой частой операцией является изменение размера устройств.
Создадим файлы в /home, в который смонтировали lv1, их присутствие в файловой системе проверим после того как диск будет расширен
В выводе размер размещенного и неразмещенного пространства vg
VG Size 5,00 GiB
PE Size 4,00 MiB
Alloc PE / Size 768 / 3,00 GiB
Free PE / Size 511 / 2,00 GiB
Расширим lv1 поскольку 1 Гб для /home куда обычно помещаются файлы пользователей недостаточно. Используем команду lvextend. Все все свободное пространство использовать система не даст, оставим 100 Мб, остальное используем для расширения lv1
Rounding size to boundary between physical extents: 1,90 GiB.
Size of logical volume vg1/lv1 changed from 1,00 GiB (256 extents) to 2,90 GiB (743 extents).
Logical volume vg1/lv1 successfully resized.
vgdisplay | grep Size
VG Size 5,00 GiB
PE Size 4,00 MiB
Alloc PE / Size 1255 / 4,90 GiB
Free PE / Size 24 / 96,00 MiB
lvdisplay теперь покажет, что под lv1 выделено 2,9 Гб. Созданные файлы остались на месте
file1.txt file2.txt
При помощи lvremove можно удалить логический девайс и все данные на нем, команду можно выполнить для несуществующего устройства lv3
Failed to find logical volume «vg1/lv3»
Настройка LVM в Linux и практика выделения разделов
Также рейд массивы и LMV можно устанавливать непосредственно на этапе установки операционной системы
Важное правило — при разметке файловой системы стоит избегать помещения раздела /boot на логический раздел поскольку информация из /boot считывается при старте системы, при размещении на логическом устройстве подобное считывание корректно может не произойти.
Часто встречающимся решением является создание рейда 1 на двух дисках с секторами, выделенными под раздел /boot, вне lvm. Остальные диски сервера объединяются в рейд какой-либо конфигурации более эффективной для хранения больших объемов данных. Рейд 1 используется для обеспечения надежности — при выходе из строя одного из дисков загрузочный сектор системы будет считываться с другого.
Читайте также про настройки безопасности при подключении к серверу, установка ОС и разметка диска для которого завершены.