Что считается файлами в oc linux
Перейти к содержимому

Что считается файлами в oc linux

  • автор:

Лаба 2

Целью работы является изучение структуры файловой системы OC LINUX, изучение команд создания, удаления, модификации файлов и каталогов, функций манипулирования данными.

Ознакомились с файловой структурой ОС Linux. Изучили команды работы с файлами.

Используя редактор vi, создали два текстовых файла (рисунок 1).

Рисунок 1 – Создание текстовых файлов.

Полученные файлы объединили в один файл с помощью команды cat (рисунок 2).

Рисунок 2 – Объединение файлов.

Создали новую директорию mydir и переместили в нее полученные файлы с помощью команды mv (рисунок 3).

Рисунок 3 – Создание директории.

Вывели полную информацию обо всех файлах и проанализировали уровни доступа (рисунок 4).

Рисунок 4 – Вывод полной информации обо всех файлах.

rw- – разрешение на чтение и запись для владельца;

r- – разрешение на чтение для членов группы;

r— – разрешение на чтение для остальных пользователей.

Добавили для всех трех файлов право выполнения членам группы и остальным пользователям с помощью команды chmod (рисунок 5)

Рисунок 5 – Добавление права выполнения.

Просмотрели атрибуты файлов (рисунок 6).

Рисунок 6 – Просмотр атрибутов файлов.

Создадим еще один каталог mydir2 (рисунок 7).

Рисунок 7 – Создание нового каталога.

Установили дополнительную связь объединенного файла с новым каталогом, но под другим именем (рисунок 8).

Рисунок 8 – Установление дополнительной связи.

Создали символическую связь svyaz c помощью команды ln -s (рисунок 9).

Рисунок 9 – Символическая связь

Сделали текущим новый каталог и вывели на экран расширенный список информации о его файлах (рисунок 10).

Рисунок 10 – Содержимое нового каталога

Произвели поиск заданной последовательности символов (TXT) с расширением (txt) в файлах текущей директории и получили перечень соответствующих файлов с помощью команды grep (рисунок 11).

Рисунок 11 – Поиск заданной последовательности символов

Получили информацию об активных процессах и имена других пользователей (рисунок 12).

Рисунок 12 – Информация об активных процессах и пользователях

3. Контрольные вопросы:

3.1. Что считается файлами в OC LINUX?

В операционной системе LINUX файлами считаются обычные файлы, каталоги, а также специальные файлы, соответствующие периферийным устройствам (каждое устройство представляется в виде файла).

3.2. Объясните назначение связей с файлами и способы их создания.

Дополнительная связь позволяет использовать файл в разных каталогах под разными именами.

ln <имя файла 1> <имя файла2>

Символическая связь является особым видом файла, в котором хранится имя файла, на который символическая связь ссылается.

ln -s <имя файла 1> <имя файла2>

3.3. Что определяет атрибуты файлов и каким образом их можно просмотреть и изменить?

Атрибуты определяют уровень доступа к файлам, а также их тип. В LINUX различаются 3 уровня доступа к файлам и каталогам:

1) доступ владельца файла;

доступ группы пользователей, к которой принадлежит владелец файла;

Для каждого уровня существуют свои байты атрибутов, значение которых расшифровывается следующим образом:

r – разрешение на чтение;

w – разрешение на запись;

x – разрешение на выполнение;

Первый символ байта атрибутов определяет тип файла и может интерпретироваться со следующими значениями:

l – символическая связь;

в – блок-ориентированный специальный файл, который соответствует таким периферийным устройствам, как накопители на магнитных дисках;

с – байт-ориентированный специальный файл, который может соответствовать таким периферийным устройствам как принтер, терминал.

Атрибуты файла и доступ к нему, можно изменить командой: chmod <коды защиты> <имя файла>

ls -l file.txt — чтение атрибутов файла.

3.4. Какие методы создания и удаления файлов, каталогов Вы знаете?

vi file.txt – создание файла с помощью редактора vi;

rm file1.txt file2.txt file3.txt — удаление файлов file1.txt, file2.txt, file3.txt;

mkdir namedir — создание каталога;

rmdir dir_1 dir_2 — удаление каталогов dir_1 dir_2;

cat > text.txt создает новый файл с именем text.txt, который можно заполнить символьными строками, вводя их с клавиатуры.t

3.5. В чем заключается поиск по шаблону?

Поиск по шаблону заключается в поиске файлов с указанием контекста. Поиск можно произвести с помощью команды grep.

3.6. Какой командой можно получить список работающих пользователей и сохранить его в файле?

Список работающих пользователей можно получить командой who, а сохранить его в файле с помощью команды who > text.1.

что считается файлами в oc linux

При навигации по файловой системе в Linux, вы обязательно столкнетесь с различными типами файлов. Наиболее часто используемые и очевидные типы — это обычные файлы и каталоги. Однако помимо их в Linux также существуют еще 5 специальных типов.

Идентификация типов файлов в Linux

Для определения типа файла достаточно воспользоваться всего одной командой:

Типы файлов в Linux

Ниже представлено краткое описание 7 различных типов файлов в Linux:

c — символьное устройство;

b — блочное устройство;

s — (локальный) сокет;

p — именованный канал;

l — символьная ссылка.

Обычный файл

Обычный файл — это наиболее распространенный тип файлов в Linux. Текстовые файлы, изображения, двоичные файлы, общие библиотеки и т.д. — все они относятся к обычному типу файлов. Вы можете создать обычный файл с помощью команды touch :

$ touch ravesli.txt
diego@debian:

$ rm ravesli.txt
diego@debian:

Каталог

Обозначается как d

Каталог — это второй по распространенности тип файлов в Linux. Каталог можно создать с помощью команды mkdir (сокр. от «make directory»):

$ mkdir ravesli
diego@debian:

$ rmdir ravesli
diego@debian:

При попытке удалить каталог, содержащий внутри себя файлы, вы получите сообщение об ошибке:

$ mkdir ravesli
diego@debian:

$ touch /home/diego/ravesli/ravesli.txt
diego@debian:

$ rmdir ravesli
rmdir: не удалось удалить ‘ravesli’: Каталог не пуст

Символьное устройство

Обозначается как c

Символьные и блочные файлы устройств позволяют пользователям и программам взаимодействовать с аппаратными периферийными устройствами. При этом символьные устройства обеспечивают последовательный поток ввода или вывода:

В этом примере символьным устройством является генератор псевдослучайных чисел.

Блочное устройство

Обозначается как b

Блочные устройства похожи на символьные. Чаще всего они управляют аппаратными устройствами, такими как: жесткие диски, память и т.д. Большинство из них располагаются в каталоге /dev :

Локальные сокеты

Обозначаются как s

Как правило, локальные сокеты используются для связи между такими службами, как: X Window, syslog и т.д.

Именованные каналы

Обозначаются как p

Символьные ссылки

Обозначаются как l

С помощью символьных ссылок администратор назначает файлу или каталогу несколько идентификаторов. Символьную ссылку можно рассматривать как указатель на исходный файл.

Существует два типа символьных ссылок в Linux:

Мягкая ссылка является указателем на некоторый файл или каталог (сродни ярлыкам в Windows). Если вы переместите файл, связь с символьной ссылкой разорвётся (но сама ссылка все еще будет существовать, указывая на файл, которого нет). Если вы замените файл другим, сохранив имя, символьная ссылка будет указывать на новый файл. Символьные ссылки могут охватывать различные разделы файловой системы.

Жесткая ссылка привязывается только к файлам, охватывает только один раздел файловой системы и, по сути, является тем же файлом, на который ссылается.

$ echo file1 > file1
diego@debian:

$ cat file2
file1
diego@debian:

Заключение

Как системный администратор вы, в основном, будете иметь дело с обычными файлами, каталогами и символьными устройствами. Как разработчик программного обеспечения вы будете сталкиваться с сокетами и именованными каналами.

Поделиться в социальных сетях:

Файловая система Linux — обзор, список команд для работы

Поговорим о файловых системах Linux. Какие существуют типы и виды. Какие их основные различия: журналируемые и не журналируемые ФС.

1. Что такое файловая система простыми словами

Термин «файловая система» можно понимать двояко. С одной стороны — это архитектура хранения битов на жестком диске, с другой — это организация каталогов в соответствии с идеологией Unix. В этой статье мы более подробно обсудим первую сторону.

В физическом смысле файловая система Linux/UNIX представляет собой пространство раздела диска разбитое на блоки фиксированного размера. Их размер кратен размеру сектора: 1024, 2048, 4096 или 8120 байт. Размер блока известен заранее.

Как происходит обмен данными между ядром, приложениями и жестким диском? Для этого существуют 2 технологии:

Список поддерживаемых ядром файловых систем находится в файле /proc/filesystems :

Иерархия файловой системы

Как мы уже сказали выше, есть вторая сторона ФС, которая состоит в определении ее с точки зрения организации расположения файлов в Linux. В этом случае можно сказать, что: файловая система — это иерархическая структура, которая начинается с корневого каталога «/» (корневой каталог) и дальше ветвится в соответствие с работой системы.

В этой статье мы будем говорить подробнее про типы файловых систем. Про организацию и структуру каталогов в Linux можно отдельно прочитать в статье:

2. Целостность файловой системы — что это такое

Файловая система называется целостной, если внесенные изменения в один файл не приведут к изменению другого файла в системе, который никак не связан с первым. В этом случае мы говорим, что у всех данных собственная физическая память.

Проверку целостности файловой системы в Linux можно запустить с помощью команды fsck (в Windows это программа называется – scandisk )

В начале ФС есть чистый бит. Если система используется, то в этот бит заносится 1. По завершению работы опять 0.

3. Список команд для работы с файлами в Linux

Права доступа к файлу/каталогу можно изменять с помощью команды chmod:

Таким образом можно изменять права доступа к файлу и каталогам (а также вложенным каталогам и файлам в них).

4. Типы файловых систем Linux — описание и обзор

Файловые системы условно делятся на два типа

Узнать файловую систему в ОС Linux

Самые популярными типами ФС в Linux являются:

В Windows поддерживаются свои ФС: NTFS, FAT32. Линукс также их поддерживает, а вот Windows не поддерживает линуксовые системы.

1 Extfs (Extended File System). Дата появления на свет апреле 1992 года. Самая первая файловая система разработанная специально для ОС на ядре Linux. Наибольший возможный размер раздела файла — 2 Гб. Максимальная длина имени файла — 255 символов. Является прародителем популярных ФС Ext2, Ext3.

2 Ext2 (second extended file system). Дата создания 1993 год. Является не журналируемой файловой системой. Была популярна до 2000-х. Имеет ряд ограничений на работу с большими файлами, зато является и самой быстрой, поэтому её часто используют в различных сравнительных тестах как эталонную.

3 Ext3 (third extended filesystem). Дата выхода 2001 год. Считается революционной, поскольку относится к поколению журналируемых систем. В настоящее время файловая система Ext3 поддерживает файлы размером до 1 ТБайт. Используется в некоторых случаях до сих пор. Разделы Ext3 могут читать Windows-программы (например, Total Commander). Разработчик Стивен Твид.

4 Ext4 (дата выхода 2006 год). Является стандартом во всех современных Linux (а сейчас 2019 год). Хорошо защищена от проблем фрагментации и оптимизирована для работы с большими файлами. Максимальный размер файловой системы не может превышать 16 ТБайт.

5 ReiserFS (или Reiser3). Создана уже после ext3 в качестве ее альтернативы. Журналируемая система. Поддерживает большую производительность. Позволяет изменять размеры разделов во время работы.

Считается самой экономичной, поскольку позволяет хранить несколько файлов в одном блоке, что позволяет использовать каждый байт жесткого диска. Обычные файловые системы могут хранить в одном блоке один файл или одну его часть.

6 Reiser4 (дата создания 2004 году). Система включает себя такие передовые технологии как транзакции, задержка выделения пространства, а так же встроенная возможность кодирования и сжатия данных.

7 XFS (журналируемая файловая система). Это производительная файловая система, разработанная в Silicon Graphics для свой операционной системы еще в 2001 году. Позволяла использовать диски 2 ТБайт. Существует возможность потери данных во время записи при сбое питания, так как большое количество буферов хранится в памяти.

9 SWAP – особый вид не журналируемой файловой системы, которая реализует структуру хранения данных, аналогичную структуре оперативной памяти. Используется для реализации файла подкачки в Linux.

5. Типы файлов Linux

Перечислим поддерживаемые типы файлов в ОС Linux

Тип файла в каталоге можно посмотреть командой:

Посмотреть список блочных устройств можно командой:

# ls-l /dev/sd* brw-rw—-1 root disk 8, 0 Мар11 19:03 /dev/sda brw-rw—-1 root disk 8, 1 Мар10 21:23 /dev/sda1 brw-rw—-1 root disk 8, 5 Мар10 21:23 /dev/sda5 brw-rw—-1 root disk 8, 16 Мар10 22:31 /dev/sdb brw-rw—-1 root disk 8, 17 Мар10 21:23 /dev/sdb1 brw-rw—-1 root disk 8, 18 Мар10 21:23 /dev/sdb2 brw-rw—-1 root disk 8, 32 Мар11 19:05 /dev/sdc brw-rw—-1 root disk 8, 33 Мар11 17:59 /dev/sdc1

Буквой «b» помечаются блочные устройства.

Посмотреть список дисков можно командой

Вывести информацию о жестком диске можно так

Файлы в Linux

Типы файлов в Linux

В Linux всё является файлами и tty терминалы не исключение.

Или аналогичную команду

crw—w—-. 1 andrei tty 136, 1 Nov 19 12:43 /dev/pts/1

Доступно семь типов файлов: обычные, директории, символьные, блоки, сокеты, именованые каналы, символьные ссылки

— : regular file
d : directory
c : character device file
b : block device file
s : local socket file
p : named pipe
l : symbolic link

Тип c означает character. То есть этот файл может принимать и показывать символы

drwxr-xr-x. 118 root root 8192 Nov 19 11:02 /etc

Видно, что тип файла d. То есть directory

Для просмотра дисков/блоков выполните

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT sda 8:0 0 8G 0 disk ├─sda1 8:1 0 1G 0 part /boot └─sda2 8:2 0 7G 0 part ├─centos-root 253:0 0 6.2G 0 lvm / └─centos-swap 253:1 0 820M 0 lvm [SWAP] sr0 11:0 1 57.7M 0 rom /run/media/andrei/VBox_GAs_6.1.10

brw-rw—-. 1 root disk 8, 0 Nov 19 11:02 /dev/sda brw-rw—-. 1 root disk 8, 1 Nov 19 11:02 /dev/sda1 brw-rw—-. 1 root disk 8, 2 Nov 19 11:02 /dev/sda2

Можно убедитсья, что тип файлов b. То есть block

? означает что должен быть один любой символ.

brw-rw—-. 1 root disk 8, 1 Nov 19 11:02 /dev/sda1 brw-rw—-. 1 root disk 8, 2 Nov 19 11:02 /dev/sda2

[12] означает что должен быть либо символ 1 либо символ 2

brw-rw—-. 1 root disk 8, 1 Nov 19 11:02 /dev/sda1 brw-rw—-. 1 root disk 8, 2 Nov 19 11:02 /dev/sda2

Когда вы хотите узнать версию системы вы можете выполнить

Тип файла l означает link то есть это не настоящий файл, а ссылка

Если бы вы пользовались redhat то настоящим был бы redhat-release

Description: CentOS Linux release 7.9.2009 (Core)

Узнать расположение файла

Узнать где находится файл lsb_release можно командой which lsb_release. Чтобы сразу получить дополнительную информацию выполните

-rwxr-xr-x. 1 root root 15929 Mar 27 2015 /usr/bin/lsb_release*

Чтобы узнать откуда взялся файл можно воспользоваться командой rpm с опциями q (query) и f (file)

Чтобы скопировать файл в интерактивном режиме воспользуйтесь командой cp с опцией i (interactive)

interactive означает, что если файл с таким имененм существует, вас спросят прежде чем затирать его

cp: overwrite ‘./hosts’?

Чтобы создать директорию сразу же с поддиректорией внутри воспользуйтесь командлой mkdir с опцией p (parent)

total 0
drwxrwxr-x. 2 andrei andrei 6 Nov 19 13:40 heiheiru

Создать сразу несколько файлов

Чтобы создать одновременно несколько файлов с именами идущими по порядку выполните touch с <>

Чтобы скопировать директорию files в директорию sites со всем содержимым выполните

Директория files была скопирована в директорию sites, то есть теперь у sites есть поддиректория files.

sudo yum install tree

sites └── files ├── file1 ├── file2 ├── file3 ├── file4 └── file5 1 directory, 5 files

Типы файлов Linux

В GNU/Linux как и других Unix-подобных операционных системах понятие типа файла не связано с расширением файла (несколькими буквами после точки в конце имени), как это обстоит в Windows.

Unix-подобная ОС не следит за расширениями файлов. Задача связать расширения файла с конкретным пользовательским приложением, в котором этот файл будет открываться, видимо лежит на какой-либо дополнительной программе. В свою очередь пользовательское приложение анализирует структуру данный файла, расширение ему также безразлично.

Таким образом, среди файловых атрибутов, хранящихся в операционной системе на базе ядра Linux, нет информации о типе данных в файле. Там есть информация о более существенном разделении, связанном с тем, что в Unix-подобных системах все объекты – это файлы. Все объекты весьма разнообразны. Поэтому тип файла в Linux – это скорее тип объекта, но не тип данных как в Windows.

В операционной системе GNU/Linux существуют следующие типы файлов: обычные файлы, каталоги, символьные ссылки, блочные устройства, символьные устройства, сокеты, каналы. Каждый тип имеет собственное обозначение одним символом. Знание этих символов нам пригодится в дальнейшем при изучении командной оболочки Bash.

Обычные файлы (-)

Сюда относятся все файлы с данными, играющими роль ценной информации сами по себе. Linux все-равно текстовый перед ним файл, исполняемый или картинка. В любом случае это будет обычный (regular) файл. Все они обозначаются знаком минус «-«. Остальные типы файлов считаются специальными (special).

Каталоги (d)

В Linux каталог представляет собой такой тип файла, данными которого является список имен других файлов и каталогов, вложенных в данный каталог. Напрямую, то есть через какой-либо редактор, пользователь не может редактировать данные файла-каталога. Редактированием занимается ядро операционной системы, получая, в том числе от пользователя, команды создания файла, удаления и др.

В файле каталога осуществляется связь между именами файлов (словесного обозначения для людей) и их индексными дескрипторами (истинным именем-числом, которым оперирует ОС).

В Unix-подобных системах один и тот же файл может существовать под разными именами и/или в разных каталогах: все имена будут связаны с одним и тем же индексным дескриптором (механизм жестких ссылок).

Также следует, что файлы всегда должны содержаться в каталогах, иначе станут недоступны, так как нигде не будет содержаться записи о них.

Символьные ссылки (l)

Символьная ссылка – это файл, в данных которого содержится адрес другого файла по его имени (а не индексному дескриптору).

Выполнение символьной ссылки приводит к открытию файла, на который она указывает. Это аналог ярлыков в операционной системе Windows.

Если удалить исходный файл, то символьная ссылка продолжит существовать. Она по-прежнему будет указывать на файл, которого уже нет.

Символьные ссылки не содержат атрибутов файлов, на которые они указывают. У них есть собственные атрибуты.

Символьные (c) и блочные устройства (b)

Файлы устройств предназначены для обращения к аппаратному обеспечению компьютера (дискам, принтерам, терминалам и др.). Когда происходит обращение к файлу устройства, то ядро операционной системы передает запрос драйверу этого устройства.

К символьным устройствам обращение происходит последовательно (символ за символом). Примером символьного устройства может служить терминал.

Считывать и записывать информацию на блочные устройства можно в произвольном порядке, причем блоками определенного размера. Пример: жесткий диск.

Сокеты (s) и каналы (p)

Чтобы понять, что такое канал и сокет, необходимо понимание процессов в операционной системе. И каналы и сокеты организуют их взаимодействие. Пользователь с данными типами файлов почти не сталкивается.

Ключевым отличием канала от сокета является то, что канал однонаправлен. Через канал один процесс всегда передает данные второму, но не наоборот. Сокеты позволяют передавать данные в разных направлениях, т. е. осуществляют связь.

Также следует отметить, что канал представлен в структуре каталогов файлом, только если он именован. Когда возникают безымянные каналы, то они существуют только внутри ядра Linux.

Команда file

Хотя выше было сказано, что Линукс не делает предположение о типе данных в обычном файле, есть специальная утилита, которая выполняет эту задачу, – программа file. Для этого она анализирует начало содержимого файла и находит в нем специальные «сигналы», характерные для определенного типа – бинарного файла, текстового, изображения и др.

На скриншоте также показано, что расширение для программы file безразлично. Файл flag – копия flag.png, и программа успешно его идентифицировала как изображение.

Команда file имеет множество различных ключей.

Курс с ответами к заданиям и дополнительными уроками:
android-приложение, pdf-версия.

Структура файловой системы Linux

anton belov

Файловая система в ОС Linux, как и в ОС Windows, представляет собой иерархическую структуру каталогов и файлов (в виде дерева), но при этом имеет ряд кардинальных отличий.

Структура каталогов

Подключение внешних носителей

В ОС Linux имеется процедура монтирования: когда подключается съемный носитель или диск, файл устройства будет виден в каталоге /dev (devices). Чтобы увидеть содержимое этого устройства, его нужно смонтировать в отдельную директорию /mnt. Также файловая система позволяет примонтировать его и в любое другое место, например /home.

Понятие файла

Понятие «файл» в Linux имеет несколько другое значение, нежели в Windows. «Файлом» можно назвать обычный файл, содержащий данные, и интерпретируемый программой. Директория также является «файлом», содержащим в себе ссылки на другие директории или файлы с данными. Файлы устройства указывает на драйвер, благодаря которому система взаимодействует с физическими устройствами. Имеются и многие другие типы файлов.

Принцип установки программ

Если в Windows программы, зачастую, хранят все данные в одной папке, например в «C:Program FilesProgramName», то в Linux файлы программы разделяются по каталогам в зависимости от типа. Например, исполняемые файлы в /bin, библиотеки в /lib, файлы конфигураций в /etc, логи и кэш в /var.

Регистр имен

Также стоит отметить чувствительность файловой системы Linux к регистру. Файлы Temp.txt и temp.txt будут интерпретироваться как разные файлы и могут находиться в одной директории, в отличие от ОС Windows, который не различает регистр имен. То же правило действует и на каталоги — имена в разных регистрах указывают на разные каталоги.

Назначение каждой директории регламентирует «Стандарт иерархии файловой системы» FHS (Filesystem Hierarchy Standard). Ниже опишем основные директории согласно стандарту FHS:

Основы Linux (обзор с практическим уклоном)

В последние несколько лет все больше и больше людей ищут возможность войти в ИТ или поглубже изучить Linux, повысив уровень своей квалификации. Вместе с тем полноценных обзоров с практическим уклоном по типу «все и сразу» написано не так уж и много (особенно на русском языке).

Главная задача данной статьи – указать начинающим специалистам направление развития, дать ключевые понятия для дальнейшего изучения и показать несколько простых практических приемов. По этой причине (а еще, безусловно, вследствие недостаточной квалификации автора) теоретический материал достаточно сильно упрощен.

Что такое Linux?

История и определение

В 1969 году в дочернем подразделении компании AT&T – Bell Laboratories – была выпущена операционная система Unix, которая стала основной для большого количества операционных систем того времени. UNIX была проприетарной системой, лицензия на нее стоила порядка 40 000 долларов. Таким образом, позволить себе ее покупку могли только крупные компании. Это послужило толчком для старта в 1983 году проекта GNU – GNU is Not Unix. Его основоположник, Ричард Столлман, объявил целью проекта создание свободно распространяемой операционной системы. Чуть позже Столлманом был написан знаменитый манифест GNU, который стал основой для лицензии GPL (GNU General Public License), актуальной и по сей день. К началу 1990-х годов в рамках проекта GNU было написано большинство компонентов ОС – оболочка bash, компиляторы, отладчик, текстовый редактор и др. Не хватало лишь ядра операционной системы.

В 1991 году Линус Торвальдс, будучи студентом финского университета, увлекся идеей написания ядра операционной системы для своего персонального компьютера с процессором Intel. Вдохновлением и прототипом для будущего Linux стала совместимая с Unix операционная система для персональных компьютеров Minix. Уже в августе 1991 года было написано ядро операционной системы, в нее были портированы оболочка bash и компилятор gсс из проекта GNU. По признанию самого Линуса, изначально это было не более, чем хобби, однако проект оказался весьма востребованным, к нему начали присоединяться разработчики со всего мира. Дополненная массой программ, разработанных в рамках проекта GNU, ОС Linux стала пригодна для практического использования. При этом ядро системы распространялось под лицензией GNU General Public License, что гарантировало свободное распространение кода ядра системы.

Итак, сегодня Linux (или GNU/Linux) – семейство Unix-подобных операционных систем на базе ядра Linux, включающих тот или иной набор утилит и программ проекта GNU. Linux-системы распространяются в виде различных дистрибутивов, имеющих свой набор системных и прикладных компонентов (как свободных, так и проприетарных).

Серверные дистрибутивы

Дистрибутив Linux — это операционная система, созданная на основе ядра Linux, которая включает в себя набор библиотек и утилит (пакетов), разработанных в рамках проекта GNU, а также систему управления пакетами (менеджер пакетов). В настоящее время существует более 500 различных дистрибутивов, разрабатываемых как при коммерческой поддержке (Red Hat / Fedora, SLED / OpenSUSE, Ubuntu и др.), так и исключительно усилиями добровольцев (Debian, Slackware, Gentoo, ArchLinux и др.).

Дистрибутивы делятся на несколько типов в зависимости от базового дистрибутива и системы управления пакетами. Вот несколько примеров наиболее популярных серверных дистрибутивов двух типов:

RPM-based (используют формат пакетов .rpm)
RedHat Enterprise Linux, CentOS, Fedora

DEB-based (используют формат пакетов .deb)
Debian, Ubuntu, Astra Linux

Стоит отметить, что существует великое множество различных дистрибутивов на любой вкус и цвет. Их невозможно даже сосчитать, так как практически каждый представитель сообщества может собрать свой собственный дистрибутив на основе ядра Linux.

Работа с Linux

Загрузка

Алгоритм включения сервера и загрузки Linux в большинстве случаев выглядит следующим образом:

BIOS / UEFI → MBR / GPT
Выполняется код, заложенный производителем аппаратного обеспечения. Этот код проводит тестирование системы POST (Power On Self Test) и передает управление загрузчику в MBR (Master Boot Record) / GPT (GUID Partition Table)

MBR / GPT → GRUB2 (существуют и другие загрузчики)
Загрузчик из MBR / GPT очень простой – он способен только найти на диске и запустить следующий загрузчик. Как правило это GRUB2, но существуют и другие загрузчики, например LILO (в настоящее время практически не используется)

GRUB2 → Kernel
GRUB2 расположен на разделе жесткого диска в каталоге /boot. GRUB2 загружает ядро Linux (vmlinuz)

Kernel → Init
Ядро запускает процесс инициализации операционной системы. Как правило это SystemD, но существуют и другие системы инициализации, например SystemV (в настоящее время практически не используется). Процесс инициализации запускает все остальные процессы в системе

Подключение

Командная оболочка

Подключиться к Linux для управления можно в интерфейсе командной строки (command-line interface, CLI) или в графическом интерфейсе (graphical user interface, GUI). При работе с серверной инфраструктурой в подавляющем числе случаев GUI отсутствует и взаимодействие с сервером осуществляется в CLI. При входе пользователя на сервер в CLI запускается командная оболочка (в GUI командную оболочку можно запустить через эмулятор, например Terminal). Командная оболочка (shell) – это программа, которая принимает команды с клавиатуры и передает их операционной системе для выполнения. Наиболее распространенной командной оболочкой в Linux является GNU bash (Bourne Again SHell). bash основывается на другой легковесной оболочке-предшественнике – sh (Bourne sh), созданной Стефеном Борном.

Команды можно выполнять с помощью командной строки, указав имя двоичного (бинарного, bin) исполняемого файла или сценария. По умолчанию в Linux много команд, которые позволяют перемещаться по файловой системе, устанавливать ПО, конфигурировать его и выполнять другие действия. Каждая запущенная команда является отдельным процессом. Важно отметить, что в Linux (в отличие от Windows) почти всегда учитывается регистр, включая имена файлов и каталогов, команды, аргументы и опции.

Подключаться к Linux и работать с командной оболочкой можно локально (например включив ПК дома или подойдя к серверу в центре обработки данных), однако гораздо чаще работать с системой требуется удаленно. Для этого необходимо настроить SSH и подключаться через него. SSH (Secure SHell) – это протокол, позволяющий производить удаленное управление операционной системой и туннелирование TCP-соединений (например, для копирования файлов). SSH основан на клиент-серверной архитектуре, которая организует защищенное (зашифрованное) соединение поверх небезопасных каналов связи. Серверная часть устанавливается на удаленном сервере, а клиентская на компьютере, с которого осуществляется подключение.

Существует много клиентов для удаленного подключения к серверу по SSH. Вот несколько примеров для различных операционных систем:

Windows
PuTTY – выбор новичка, PowerShell (команда ssh), Xshell – выбор автора, MobaXterm, mRemoteNG

Linux
Terminal (команда ssh) – выбор новичка и автора, Asbru Connection Manager

MacOS
Terminal (команда ssh) – выбор новичка и автора, Core Shell

Установка программ (утилит) пакетным менеджером

Зачем нужны пакетные менеджеры?

На заре развития Linux установить приложение (утилиту) можно было только путем скачивания исходного кода программы и компиляции. Это не практично и не слишком удобно для пользователей, поэтому были разработаны пакетные менеджеры. Установка приложений в них производится из пакетов – архивов с файлами скомпилированной программы. Большинство популярных дистрибутивов Linux содержат пакетные менеджеры, способные устанавливать любое программное обеспечение. Пакетные менеджеры имеют свой список репозиториев – серверов с базой пакетов. Во время установки алгоритм менеджера находит необходимый пакет в базе и производит автоматическое скачивание, установку и настройку.

Существует несколько форматов пакетов, однако наибольшее распространение получили .deb и .rpm. Рассмотрим операционные системы и менеджеры пакетов для данных форматов:

DEB (.deb)
ОС – DEB-based, например Debian, Ubuntu, AstraLinux
Система управления пакетами – DPKG (работает только с локальными пакетами)
Пакетный менеджер – apt

RPM (.rpm)
ОС – RPM-based, например RedHat Enterprise Linux, Fedora, CentOS
Система управления пакетами – RPM (работает только с локальными пакетами)
Пакетный менеджер – yum (в последних дистрибутивах заменен на dnf)

Практика

На практике пользователю необходимо уметь взаимодействовать с пакетными менеджерами – устанавливать и удалять пакеты.

Ниже приведены несколько примеров команд:

При необходимости уточняйте описание утилит и ключей выполнения в Интернете или в руководстве man.

Структура файловой системы и работа с файлами

Типы файлов

Все объекты в Linux являются файлами. Существуют следующие типы файлов:

Обычные файлы
Символьные и двоичные данные (текст, картинки, программы и др.)

Каталог (директория) d
Список ссылок на файлы или другие каталоги

Символьные ссылки l
Ссылки на другие файлы по имени

Блочные устройства b, символьные устройства c
Интерфейсы для взаимодействия с аппаратным обеспечением (диски, терминалы, клавиатуры, принтеры и др.). Когда происходит обращение к файлу устройства, ядро операционной системы передает запрос драйверу этого устройства

Сокеты s и каналы p
Интерфейсы для взаимодействия процессов

Структура файловой системы

Структура файловой системы представляет собой дерево, корнем которой является каталог /.

Рассмотрим подробно структуру и назначение каталогов:

/bin (binaries) – исполняемые файлы самых необходимых утилит. Может быть символьной ссылкой на /usr/bin

/boot – файлы, необходимые для самого первого этапа загрузки – загрузки ядра (и обычно само ядро)

/dev (devices) – блочные и символьные файлы устройств (диски, терминалы, клавиатуры, принтеры и др.)

/etc (etcetera) – конфигурационные файлы системы и различных программ

/home – домашние каталоги пользователей для хранения «личных» файлов

/lib (libraries) – файлы библиотек (стандартных функций, необходимых многим программам), необходимых для работы утилит. Может быть символьной ссылкой на /usr/bin

/mnt (mount) – каталог для подключения файловых систем (съемных носителей и др.)

/opt (optional) – каталог для дополнительных программ (проприетарных драйверов, агентов мониторинга и др.)

/proc (process) – файлы в оперативной памяти, в которых содержится информация о выполняемых в системе процессах

/root – домашний каталог пользователя root

/sbin (system binaries) – файлы системных утилит, необходимые для загрузки, резервного копирования и восстановления системы. Может быть символьной ссылкой на /usr/sbin

/sys (system) – виртуальная файловая система sysfs, которая содержит информацию об аппаратном обеспечении (ЦПУ, ОЗУ, дисках, сетевых устройствах), драйверах, ядре системы и др.

/tmp – каталог для временных файлов, обычно зачищается при каждой загрузке системы

/usr – пользовательский каталог, который содержит каталоги исполняемых файлов и конфигурационных файлов

/var (variable) – файлы, создаваемые или используемые различными программами (логи, очереди, идентификаторы процессов, БД и др.)

Права доступа

В Linux права доступа к файлам (в том числе к каталогам) задаются для трех видов пользователей – владельца, группы владельца и остальных. Также есть три типа доступа к файлу – чтение r (Read), запись w (Write) и исполнение x (eXecution), которые задаются для каждого из видов пользователей. Прочерк означает отсутствие доступа.

Таким образом, права доступа к файлу выглядят следующим образом:

права для владельца (u, user) – read, write, execution

права для группы владельца (g, group) – read, write, execution

права для остальных пользователей (o, other) – read, write, execution

Пример: rwx r— — означает, что у владельца есть права на все, у группы владельца доступ только на чтение, а у остальных доступа нет. В двоичной системе счисления эти права выглядят как три группы цифр – 111 100 000, что равносильно трем цифрам 7 4 0 в восьмеричной и десятичной системах счисления.

Практика

На практике пользователю необходимо осуществлять навигацию по системе, просматривать, создавать, редактировать и удалять файлы, настраивать права доступа.

Ниже приведены несколько примеров наиболее часто используемых команд:

При необходимости уточняйте описание утилит и ключей выполнения в Интернете или в руководстве man.

Процессы и потребление ресурсов сервера

Процессы

Если предельно упростить, то процесс – это любая программа, которая выполняется в системе. В ходе работы с системой может быть запущено множество программ, которые, в свою очередь, могут запустить множество процессов. Простейший пример процесса – командная оболочка bash. Каждому процессу в Linux присваивается уникальный идентификатор процесса (PID), который используется ядром для управления процессом до завершения программы или команды, с которой он связан.

Процесс может находиться в следующих статусах:

Выполнение (R, Running)
Выполнение или ожидание ЦПУ для выполнения

Сон (S, Sleep)
Прерываемое программно ожидание

Непрерываемый сон (D, Direct)
Ожидание «прямого» сигнала от аппаратной части для прерывания

Приостановлен (T, Tracing)
Отладка

Зомби (Z, Zombie)
Выполнение завершено, однако ресурсы не освобождены

Почти любой процесс (кроме процесса в статусе D) может быть принудительно прерван администратором в случае необходимости («убит»). Это не всегда безопасно, однако возможно.

Запущенные процессы требуют использования аппаратных ресурсов сервера – ЦПУ, ОЗУ, дисков, сетевых интерфейсов.

Практика

На практике пользователю необходимо просматривать списки процессов и останавливать процессы, а также просматривать имеющиеся и потребляемые ресурсы сервера в системе.

Ниже приведены несколько примеров наиболее часто используемых команд:

При необходимости уточняйте описание утилит и ключей выполнения в Интернете или в руководстве man.

Программный комплекс systemd

Зачем нужен systemd?

SystemD – это программный комплекс, состоящий из системных компонентов Linux. Основным компонентом является система инициализации системы SystemD, которая пришла на смену SystemV в большинстве современных дистрибутивов. Ядро Linux запускает процесс systemd, который, в свою очередь, запускает все остальные процессы системы.

SystemD предоставляет следующий функционал:

Запуск служб при старте системы (по возможности параллельно) по различным таргетам (target, аналог уровней загрузки в SystemV)
Обеспечивается обратная совместимость с системами инициализации SystemV и LSB

Контроль состояния запущенных служб

Управление устройствами, входом в систему, сетевыми подключениями, ведение журнала событий

Интерфейсы для реализации функциональных возможностей ядра – cgroups, autofs, kdbus

Набор утилит для управления системой – systemctl, journalctl и др.

Что такое systemd unit?

SystemD Unit – это обычный текстовый файл в стиле ini, который декларативно описывает информацию о службах .service, устройствах .device, целях запуска .target и других типах модулей systemd.

Описание юнита состоих из нескольких секций:

Unit
Description (краткое описание), After (ожидание запуска), Requires (обязательная зависимость) и др.

Service
Type (тип) – по умолчанию Simple, ExecStart (команда для запуска), ExecStop (команда для остановки) и др.

Install
WantedBy (таргет или уровень запуска, на котором юнит должен запуститься)

Файлы systemd unit располагаются в следующих каталогах:

/etc/systemd/system – юниты, создаваемые администраторами

/usr/lib/systemd/system – юниты из установленых пакетов

/run/systemd/system – юниты, создаваемые во время работы системы (в runtime)

Редактировать и создавать юниты можно с помощью текстового редактора (например vi или nano).

Примеры systemd unit – NGINX, Apache

Практика

На практике пользователю необходимо просматривать различные systemd unit, просматривать их содержимое и управлять сервисами, а также читать журналы логов.

Ниже приведены несколько примеров наиболее часто используемых команд:

При необходимости уточняйте описание утилит и ключей выполнения в Интернете или в руководстве man.

На практике пользователю необходимо уметь просматривать сетевые настройки сервера, а также уметь проводить простейшую диагностику сетевых проблем.

Ниже приведены несколько примеров наиболее часто используемых команд:

При необходимости уточняйте описание утилит и ключей выполнения в Интернете или в руководстве man.

Файловые системы Linux

Файловая система — это набор стандартов и соответствующих процессов, которые определяют и управляют тем, в каком виде ваши данные хранятся на носителе информации и каким образом они могут быть из него извлечены.

Способ организации файловой системы в Linux

В качестве способа повышения эффективности ОС, в Linux применяется следующая модель файловой системы:

Благодаря такому подходу, добавление поддержки какой-нибудь новой файловой системы не потребует вносить соответствующих изменений в само ядро ОС.

Виртуальная файловая система (сокр. «VFS» от англ. «Virtual File System») — это специальный слой абстракции, предоставляющий программный интерфейс (единый набор команд) для взаимодействия между ядром и конкретной реализацией файловой системы.

Ядро Linux поддерживает различные типы файловых систем (ext3, ext4, ReiserFS, Btrfs, XFS и многие другие). На сегодняшний день наиболее часто используемой файловой системой является ext4, поэтому в данной статье основной упор будет сделан именно на нее.

Примечание: В Linux практически все объекты представлены в виде файлов (например, каталоги, принтеры, разделы диска, устройства и т.д.). Это делает еще более важным изучение того, как работает файловая система Linux.

Эволюция файловой системы ext в Linux

Давайте детально рассмотрим эволюцию файловой системы ext в Linux:

Файловая система Minix

Файловая система Minix — это первая файловая система, являющаяся прообразом современных файловых систем в Linux, которая была представлена в 1987 году Эндрю С. Таненбаумом в составе одноименной ОС Minix.

Операционная система Minix и её файловая система использовались в виде наглядного пособия для студентов, изучающих основы строения ОС (одним из таких студентов был сам Линус Торвальдс). Из-за того, что Minix была, прежде всего, учебной системой, её файловая система обладала множеством недостатков: производительность файловой системы оставляла желать лучшего; длина имени файла была ограничена 14 символами, а размер разделов — 64 МБ. Для сравнения, жесткие диски того времени имели размер вплоть до 140 МБ.

Файловая система ext

ext или extfs (сокр. от англ. «Extended File System») — это первая файловая система, предназначенная специально для Linux, которая была представлена в апреле 1992 года. Используемая структура метаданных была разработана Реми Кардом, на создание которой его вдохновила Unix File System. Максимальная длина имени файла составляла 255 символов, а размер раздела — до 2 ГБ.

Хотя ext и удалось решить проблемы, присутствовавшие в файловой системе Minix, у нее был один серьезный недостаток — временная метка. Сейчас, когда каждый файл в Linux имеет три временные метки (доступа к файлу, изменения содержимого файла, изменения свойств и метаданных файла (например, разрешений)), файловая система ext поддерживала только одну временную метку.

Файловая система ext2

В январе 1993 года, менее чем через год после выхода ext, Реми Кард разрабатывает новую файловую систему — ext2.

В ext2 были расширены функциональные возможности ext:

увеличена производительность файловой системы;

данные файлов хранились в блоках данных одинаковой длины;

поддерживался максимальный размер файла в 2 тебибайта;

длина имени файла была ограничена 255 байтами (а не количеством символов, как раньше).

Высокая скорость работы ext2 объяснялась тем, что система не поддерживала механизм ведения логов (или «журналируемости»). С одной стороны, данный аспект можно отнести к преимуществу ext2, так как при работе с имеющими ограниченный ресурс использования накопителями (например, SSD-дисками или USB-устройствами), нет избыточных циклов перезаписи данных, следовательно, ресурс накопителя расходуется медленнее. С другой стороны, отсутствие системы ведения логов в ext2 часто приводило к двум очень неприятным проблемам:

Повреждение файлов, если в момент записи данных на диск отключалось питание или возникал сбой системы.

Потеря производительности из-за фрагментации данных: происходит, когда один файл разбивается на части (фрагментируется) и распределяется по нескольким местам на диске. В результате чтение и запись файлов занимают больше времени, что приводит к снижению производительности файловой системы.

Система ext2 использовалась по большей части до начала 2000-х годов, когда была представлена файловая система ext3.

Файловая система ext3

В ноябре 2001 года, благодаря усилиям программиста Стивена Твиди, вместе с релизом ядра Linux 2.4.15 увидела свет и новая файловая система — ext3.

Файловая система ext3 — это улучшенная версия файловой системы ext2, в которой появилась возможность ведения логов. Она, как и ext2, поддерживает файлы размером в 2 тебибайта, а имена файлов ограничены 255 байтами.

Благодаря логам, система сохраняет в специальном лог-файле (или «журнале») всю информацию об изменениях в данных, которые еще предстоит внести. В случае потери питания или сбоя системы, информация о файлах, хранящаяся в логах, может быть восстановлена в течение нескольких секунд, благодаря чему снижается риск повреждения или потери данных.

Ядро Linux поддерживает три уровня ведения логов:

Journal — состоит из записи метаданных и содержимого файлов в лог-файл до внесения изменений в основную файловую систему, тем самым обеспечивая наиболее полное логирование данных. Если случится какая-нибудь аварийная ситуация, то можно перечитать лог-файл и восстановить потерянную информацию. Недостатком данного уровня ведения логов является то, что он снижает производительность системы.

Ordered — процесс сохранения данных выполняется в определенном порядке: сначала в лог-файл записываются метаданные, затем содержимое файла записывается в основную файловую систему и уже тогда метаданные соединяются с основной файловой системой. В случае сбоя, основная файловая система не будет повреждена; риску повреждения подвергаются только те файлы, которые находятся во время сбоя непосредственно в процессе записи.

Writeback — уровень ведения лог-файла, при котором в него заносятся только метаданные, а содержимое файла записывается непосредственно в основную файловую систему. Из-за отсутствия синхронизации метаданных и содержимого файлов, в случае сбоя системы они, скорее всего, окажутся поврежденными.

Файловая система ext4

Файловая система ext4 была представлена в октябре 2008 года вместе с ядром Linux 2.6.28. Она поддерживает максимальный размер файла в 16 тебибайт и ограничивает максимальную длину имени файла 255 байтами.

Особенности файловой системы ext4

Давайте рассмотрим основной функционал файловой системы ext4:

Обратная совместимость. Файловая система ext4 поддерживает обратную совместимость с файловыми системами ext3 и ext2. Дополнительной функцией является автоматическое монтирование файловой системы ext3 в режиме ext3 с помощью драйвера ext4.

Улучшения распределения. Файловая система ext4 более эффективно распределяет блоки данных перед их записью на диск. Это повышает производительность как чтения, так и записи.

Расширение диапазона временных меток. Файловая система ext4 добавляет еще 408 лет к диапазону значений временных меток и поддерживает даты вплоть до 10 мая 2446 года. Также улучшилась точность временных меток — теперь они измеряются в наносекундах.

Экстенты (Последовательные блоки). Устаревшие версии файловой системы ext отслеживают каждый блок, который связан с хранением данных файла (данный подход называется методом «непрямого сопоставления»). Но этот процесс перестает быть эффективным, когда речь заходит о больших файлах, требующих большого количества блоков. Экстенты решили эту проблему: с их помощью уменьшается объем метаданных, необходимых для сопоставления блоков каждого файла. Система сохраняет адрес только первого и последнего блока некоторого довольно большого файла, сообщая таким образом, что данные находятся в следующих n блоках. Благодаря этому, файл, например, размером в 500 МБ, может храниться в единственном экстенте сопоставимого размера, а не быть разбитым на 128 000 4-килобайтных блоков, как при непрямом сопоставлении.

Многоблочное распределение. Особый механизм распределения блоков ищет свободные блоки, которые можно использовать для записи данных на диск. Файловая система ext4 задействует многоблочное распределение, позволяющее распределять несколько блоков всего лишь одним вызовом. Это уменьшает фрагментацию диска.

Отложенное распределение. Функция отложенного распределения выделяет блоки только при записи файла на диск. Благодаря этой функции кэш-память не заполняется ненужными данными, а производительность системы повышается.

Неограниченное количество подкаталогов. Ядро Linux версии 2.6.23 поддерживает неограниченное количество подкаталогов. Файловая система ext4 ввела древовидную структуру данных HTree, чтобы избежать снижения производительности. HTree представляет собой специализированную версию B-дерева.

Подсчет контрольных сумм. Файловая система ext4 использует подсчет контрольной суммы файлов. Данный механизм был введен для снижения риска повреждения файлов. Система ведения логов является наиболее используемой частью диска. Когда происходит сбой оборудования, блоки становятся непригодными для использования и происходит повреждение файлов. Используя подсчет контрольной суммы, система постоянно проверяет, не поврежден ли блок. Этот процесс также повышает производительность, поскольку сокращает время работы с лог-файлом.

Быстрая проверка файловой системы. Файловая система ext4 помечает нераспределенные группы блоков. Время, необходимое для выполнения команды проверки диска fsck , значительно сокращается, поскольку отмеченные группы пропускаются. Это повышает общую производительность.

Онлайн-дефрагментация. Фрагментация диска приводит к снижению производительности файловой системы, что было серьезной проблемой для ext2 и ext3. Файловая система ext4 поддерживает утилиту e4defrag, которая позволяет пользователям дефрагментировать отдельные файлы или всю файловую систему.

Ограничения файловой системы ext4

Хотя файловая система ext4 считается лучшей файловой системой для дистрибутивов Linux, есть несколько ограничений, которые следует учитывать в вашей дальнейшей работе:

Восстановление поврежденных данных. Файловая система ext4 не может обнаружить или восстановить поврежденные данные, уже записанные на диск.

Максимальный размер тома установлен в 1 эксбибайт. Однако файловая система не может обрабатывать более 100 тебибайт данных без значительной потери производительности и увеличения фрагментации диска.

Альтернативные файловые системы

Существует несколько альтернативных файловых систем, поддерживаемых ядром Linux.

XFS — это 64-разрядная файловая система, которая впервые была представлена в 1994 году и встроена в ядро Linux с 2001 года. XFS поддерживает максимальный размер файла в 8 эксбибайт и ограничивает длину имени файла 255 байтами. Она поддерживает ведение логов и, как и ext4, сохраняет изменения в лог-файле до того, как они будут зафиксированы в основной файловой системе. Это снижает вероятность повреждения файлов.

Данные структурированы в виде B + -деревьев, что обеспечивает эффективное распределение пространства и, следовательно, повышение производительности.

Основным недостатком этой системы является сложный процесс изменения размера существующей файловой системы XFS.

OpenZFS

OpenZFS — это платформа, которая объединяет функционал традиционных файловых систем и диспетчера томов. Впервые была представлена в 2013 году. OpenZFS поддерживает максимальный размер файла в 16 эксбибайт и ограничивает максимальную длину имени файла 255 символами. В качестве особенностей данной системы можно выделить защиту от повреждения данных, шифрование данных, поддержку накопителей увеличенного объема, копирование при записи и RAID-Z.

Основным недостатком OpenZFS является юридическая несовместимость между лицензиями CDDL (OpenZFS) и GPL (ядро Linux). Эта проблема решается путем компиляции и загрузки кода ZFS в ядро Linux.

Btrfs

Btrfs (сокр. от англ. «Btree file system») — это файловая система, которая была разработана компанией Oracle и выпущена вместе с ядром Linux 2.6.29 в 2009 году. Btrfs поддерживает максимальный размер файла в 16 эксбибайт и ограничивает максимальную длину имени файла 255 символами.

Некоторые особенности Btrfs включают в себя:

добавление и удаление блочных устройств в режиме онлайн;

настраиваемое для каждого файла или тома сжатие;

контрольные суммы и возможность создания файлов подкачки и разделов подкачки.

JFS (сокр. от англ. «Journaled File System») — это файловая система, которая была разработана компанией IBM для AIX Unix в 1990 году. Она является альтернативой файловой системе ext. Она также может быть использована вместо ext4 там, где требуется стабильность при небольшом количестве затрачиваемых ресурсов.

ReiserFS

ReiserFS — это альтернатива файловой системе ext3, которая обладает улучшенной производительностью и расширенным функционалом. Ранее, ReiserFS использовалась в качестве файловой системы по умолчанию в SUSE Linux. ReiserFS поддерживает динамическое изменение размеров файловой системы. К недостаткам можно отнести относительно низкую производительность.

Примечание: Такие файловые системы, как NTFS, FAT и HFS могут использоваться в Linux, но корневая файловая система Linux на них не устанавливается, поскольку они для этого не предназначены. Swap — это файл подкачки, служащий источником дополнительной памяти в тех случаях, когда для выполнения программы требуется больше оперативной памяти, чем имеется в компьютере, — он не является отдельной файловой системой.

Как узнать, какая у меня файловая система?

Способ №1: Использование команды df

Команда df отображает информацию об использовании дискового пространства файловой системы. Для указания того, что нам нужно вывести тип файловой системы, используйте следующую команду:

$ df -Th | grep «^/dev»

Как вы можете видеть, у меня используется файловая система ext4 (см. раздел /dev/sda1).

Примечание: Имена дисков в Linux расположены в алфавитном порядке. /dev/sda — это первый жесткий диск (основной), /dev/sdb — второй и т.д. Цифры относятся к разделам, поэтому /dev/sda1 — это первый раздел первого диска.

Способ №2: Использование команды fsck

Команда fsck применяется для проверки и, при необходимости, восстановления файловых систем Linux. При этом она также может отображать и тип файловой системы на указанных разделах диска, например:

Способ №3: Использование команды lsblk

Команда lsblk отображает информацию о блочных устройствах. Добавив опцию -f , мы также получим и информацию о типе файловой системе:

Способ №4: Использование команды mount

Команда mount применяется для монтирования файловой системы в Linux. Её также можно использовать для монтирования ISO-образа, удаленной файловой системы Linux и многого другого. Чтобы узнать тип файловой системы, используйте следующую комбинацию:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *