Какая файловая система нужна для linux
Перейти к содержимому

Какая файловая система нужна для linux

  • автор:

Файловые системы Linux

Файловая система — это набор стандартов и соответствующих процессов, которые определяют и управляют тем, в каком виде ваши данные хранятся на носителе информации и каким образом они могут быть из него извлечены.

Способ организации файловой системы в Linux

В качестве способа повышения эффективности ОС, в Linux применяется следующая модель файловой системы:

Благодаря такому подходу, добавление поддержки какой-нибудь новой файловой системы не потребует вносить соответствующих изменений в само ядро ОС.

Виртуальная файловая система (сокр. «VFS» от англ. «Virtual File System») — это специальный слой абстракции, предоставляющий программный интерфейс (единый набор команд) для взаимодействия между ядром и конкретной реализацией файловой системы.

Ядро Linux поддерживает различные типы файловых систем (ext3, ext4, ReiserFS, Btrfs, XFS и многие другие). На сегодняшний день наиболее часто используемой файловой системой является ext4, поэтому в данной статье основной упор будет сделан именно на нее.

Примечание: В Linux практически все объекты представлены в виде файлов (например, каталоги, принтеры, разделы диска, устройства и т.д.). Это делает еще более важным изучение того, как работает файловая система Linux.

Эволюция файловой системы ext в Linux

Давайте детально рассмотрим эволюцию файловой системы ext в Linux:

Файловая система Minix

Файловая система Minix — это первая файловая система, являющаяся прообразом современных файловых систем в Linux, которая была представлена в 1987 году Эндрю С. Таненбаумом в составе одноименной ОС Minix.

Операционная система Minix и её файловая система использовались в виде наглядного пособия для студентов, изучающих основы строения ОС (одним из таких студентов был сам Линус Торвальдс). Из-за того, что Minix была, прежде всего, учебной системой, её файловая система обладала множеством недостатков: производительность файловой системы оставляла желать лучшего; длина имени файла была ограничена 14 символами, а размер разделов — 64 МБ. Для сравнения, жесткие диски того времени имели размер вплоть до 140 МБ.

Файловая система ext

ext или extfs (сокр. от англ. «Extended File System») — это первая файловая система, предназначенная специально для Linux, которая была представлена в апреле 1992 года. Используемая структура метаданных была разработана Реми Кардом, на создание которой его вдохновила Unix File System. Максимальная длина имени файла составляла 255 символов, а размер раздела — до 2 ГБ.

Хотя ext и удалось решить проблемы, присутствовавшие в файловой системе Minix, у нее был один серьезный недостаток — временная метка. Сейчас, когда каждый файл в Linux имеет три временные метки (доступа к файлу, изменения содержимого файла, изменения свойств и метаданных файла (например, разрешений)), файловая система ext поддерживала только одну временную метку.

Файловая система ext2

В январе 1993 года, менее чем через год после выхода ext, Реми Кард разрабатывает новую файловую систему — ext2.

В ext2 были расширены функциональные возможности ext:

увеличена производительность файловой системы;

данные файлов хранились в блоках данных одинаковой длины;

поддерживался максимальный размер файла в 2 тебибайта;

длина имени файла была ограничена 255 байтами (а не количеством символов, как раньше).

Высокая скорость работы ext2 объяснялась тем, что система не поддерживала механизм ведения логов (или «журналируемости»). С одной стороны, данный аспект можно отнести к преимуществу ext2, так как при работе с имеющими ограниченный ресурс использования накопителями (например, SSD-дисками или USB-устройствами), нет избыточных циклов перезаписи данных, следовательно, ресурс накопителя расходуется медленнее. С другой стороны, отсутствие системы ведения логов в ext2 часто приводило к двум очень неприятным проблемам:

Повреждение файлов, если в момент записи данных на диск отключалось питание или возникал сбой системы.

Потеря производительности из-за фрагментации данных: происходит, когда один файл разбивается на части (фрагментируется) и распределяется по нескольким местам на диске. В результате чтение и запись файлов занимают больше времени, что приводит к снижению производительности файловой системы.

Система ext2 использовалась по большей части до начала 2000-х годов, когда была представлена файловая система ext3.

Файловая система ext3

В ноябре 2001 года, благодаря усилиям программиста Стивена Твиди, вместе с релизом ядра Linux 2.4.15 увидела свет и новая файловая система — ext3.

Файловая система ext3 — это улучшенная версия файловой системы ext2, в которой появилась возможность ведения логов. Она, как и ext2, поддерживает файлы размером в 2 тебибайта, а имена файлов ограничены 255 байтами.

Благодаря логам, система сохраняет в специальном лог-файле (или «журнале») всю информацию об изменениях в данных, которые еще предстоит внести. В случае потери питания или сбоя системы, информация о файлах, хранящаяся в логах, может быть восстановлена в течение нескольких секунд, благодаря чему снижается риск повреждения или потери данных.

Ядро Linux поддерживает три уровня ведения логов:

Journal — состоит из записи метаданных и содержимого файлов в лог-файл до внесения изменений в основную файловую систему, тем самым обеспечивая наиболее полное логирование данных. Если случится какая-нибудь аварийная ситуация, то можно перечитать лог-файл и восстановить потерянную информацию. Недостатком данного уровня ведения логов является то, что он снижает производительность системы.

Ordered — процесс сохранения данных выполняется в определенном порядке: сначала в лог-файл записываются метаданные, затем содержимое файла записывается в основную файловую систему и уже тогда метаданные соединяются с основной файловой системой. В случае сбоя, основная файловая система не будет повреждена; риску повреждения подвергаются только те файлы, которые находятся во время сбоя непосредственно в процессе записи.

Writeback — уровень ведения лог-файла, при котором в него заносятся только метаданные, а содержимое файла записывается непосредственно в основную файловую систему. Из-за отсутствия синхронизации метаданных и содержимого файлов, в случае сбоя системы они, скорее всего, окажутся поврежденными.

Файловая система ext4

Файловая система ext4 была представлена в октябре 2008 года вместе с ядром Linux 2.6.28. Она поддерживает максимальный размер файла в 16 тебибайт и ограничивает максимальную длину имени файла 255 байтами.

Особенности файловой системы ext4

Давайте рассмотрим основной функционал файловой системы ext4:

Обратная совместимость. Файловая система ext4 поддерживает обратную совместимость с файловыми системами ext3 и ext2. Дополнительной функцией является автоматическое монтирование файловой системы ext3 в режиме ext3 с помощью драйвера ext4.

Улучшения распределения. Файловая система ext4 более эффективно распределяет блоки данных перед их записью на диск. Это повышает производительность как чтения, так и записи.

Расширение диапазона временных меток. Файловая система ext4 добавляет еще 408 лет к диапазону значений временных меток и поддерживает даты вплоть до 10 мая 2446 года. Также улучшилась точность временных меток — теперь они измеряются в наносекундах.

Экстенты (Последовательные блоки). Устаревшие версии файловой системы ext отслеживают каждый блок, который связан с хранением данных файла (данный подход называется методом «непрямого сопоставления»). Но этот процесс перестает быть эффективным, когда речь заходит о больших файлах, требующих большого количества блоков. Экстенты решили эту проблему: с их помощью уменьшается объем метаданных, необходимых для сопоставления блоков каждого файла. Система сохраняет адрес только первого и последнего блока некоторого довольно большого файла, сообщая таким образом, что данные находятся в следующих n блоках. Благодаря этому, файл, например, размером в 500 МБ, может храниться в единственном экстенте сопоставимого размера, а не быть разбитым на 128 000 4-килобайтных блоков, как при непрямом сопоставлении.

Многоблочное распределение. Особый механизм распределения блоков ищет свободные блоки, которые можно использовать для записи данных на диск. Файловая система ext4 задействует многоблочное распределение, позволяющее распределять несколько блоков всего лишь одним вызовом. Это уменьшает фрагментацию диска.

Отложенное распределение. Функция отложенного распределения выделяет блоки только при записи файла на диск. Благодаря этой функции кэш-память не заполняется ненужными данными, а производительность системы повышается.

Неограниченное количество подкаталогов. Ядро Linux версии 2.6.23 поддерживает неограниченное количество подкаталогов. Файловая система ext4 ввела древовидную структуру данных HTree, чтобы избежать снижения производительности. HTree представляет собой специализированную версию B-дерева.

Подсчет контрольных сумм. Файловая система ext4 использует подсчет контрольной суммы файлов. Данный механизм был введен для снижения риска повреждения файлов. Система ведения логов является наиболее используемой частью диска. Когда происходит сбой оборудования, блоки становятся непригодными для использования и происходит повреждение файлов. Используя подсчет контрольной суммы, система постоянно проверяет, не поврежден ли блок. Этот процесс также повышает производительность, поскольку сокращает время работы с лог-файлом.

Быстрая проверка файловой системы. Файловая система ext4 помечает нераспределенные группы блоков. Время, необходимое для выполнения команды проверки диска fsck , значительно сокращается, поскольку отмеченные группы пропускаются. Это повышает общую производительность.

Онлайн-дефрагментация. Фрагментация диска приводит к снижению производительности файловой системы, что было серьезной проблемой для ext2 и ext3. Файловая система ext4 поддерживает утилиту e4defrag, которая позволяет пользователям дефрагментировать отдельные файлы или всю файловую систему.

Ограничения файловой системы ext4

Хотя файловая система ext4 считается лучшей файловой системой для дистрибутивов Linux, есть несколько ограничений, которые следует учитывать в вашей дальнейшей работе:

Восстановление поврежденных данных. Файловая система ext4 не может обнаружить или восстановить поврежденные данные, уже записанные на диск.

Максимальный размер тома установлен в 1 эксбибайт. Однако файловая система не может обрабатывать более 100 тебибайт данных без значительной потери производительности и увеличения фрагментации диска.

Альтернативные файловые системы

Существует несколько альтернативных файловых систем, поддерживаемых ядром Linux.

XFS — это 64-разрядная файловая система, которая впервые была представлена в 1994 году и встроена в ядро Linux с 2001 года. XFS поддерживает максимальный размер файла в 8 эксбибайт и ограничивает длину имени файла 255 байтами. Она поддерживает ведение логов и, как и ext4, сохраняет изменения в лог-файле до того, как они будут зафиксированы в основной файловой системе. Это снижает вероятность повреждения файлов.

Данные структурированы в виде B + -деревьев, что обеспечивает эффективное распределение пространства и, следовательно, повышение производительности.

Основным недостатком этой системы является сложный процесс изменения размера существующей файловой системы XFS.

OpenZFS

OpenZFS — это платформа, которая объединяет функционал традиционных файловых систем и диспетчера томов. Впервые была представлена в 2013 году. OpenZFS поддерживает максимальный размер файла в 16 эксбибайт и ограничивает максимальную длину имени файла 255 символами. В качестве особенностей данной системы можно выделить защиту от повреждения данных, шифрование данных, поддержку накопителей увеличенного объема, копирование при записи и RAID-Z.

Основным недостатком OpenZFS является юридическая несовместимость между лицензиями CDDL (OpenZFS) и GPL (ядро Linux). Эта проблема решается путем компиляции и загрузки кода ZFS в ядро Linux.

Btrfs

Btrfs (сокр. от англ. «Btree file system») — это файловая система, которая была разработана компанией Oracle и выпущена вместе с ядром Linux 2.6.29 в 2009 году. Btrfs поддерживает максимальный размер файла в 16 эксбибайт и ограничивает максимальную длину имени файла 255 символами.

Некоторые особенности Btrfs включают в себя:

добавление и удаление блочных устройств в режиме онлайн;

настраиваемое для каждого файла или тома сжатие;

контрольные суммы и возможность создания файлов подкачки и разделов подкачки.

JFS (сокр. от англ. «Journaled File System») — это файловая система, которая была разработана компанией IBM для AIX Unix в 1990 году. Она является альтернативой файловой системе ext. Она также может быть использована вместо ext4 там, где требуется стабильность при небольшом количестве затрачиваемых ресурсов.

ReiserFS

ReiserFS — это альтернатива файловой системе ext3, которая обладает улучшенной производительностью и расширенным функционалом. Ранее, ReiserFS использовалась в качестве файловой системы по умолчанию в SUSE Linux. ReiserFS поддерживает динамическое изменение размеров файловой системы. К недостаткам можно отнести относительно низкую производительность.

Примечание: Такие файловые системы, как NTFS, FAT и HFS могут использоваться в Linux, но корневая файловая система Linux на них не устанавливается, поскольку они для этого не предназначены. Swap — это файл подкачки, служащий источником дополнительной памяти в тех случаях, когда для выполнения программы требуется больше оперативной памяти, чем имеется в компьютере, — он не является отдельной файловой системой.

Как узнать, какая у меня файловая система?

Способ №1: Использование команды df

Команда df отображает информацию об использовании дискового пространства файловой системы. Для указания того, что нам нужно вывести тип файловой системы, используйте следующую команду:

$ df -Th | grep «^/dev»

Как вы можете видеть, у меня используется файловая система ext4 (см. раздел /dev/sda1).

Примечание: Имена дисков в Linux расположены в алфавитном порядке. /dev/sda — это первый жесткий диск (основной), /dev/sdb — второй и т.д. Цифры относятся к разделам, поэтому /dev/sda1 — это первый раздел первого диска.

Способ №2: Использование команды fsck

Команда fsck применяется для проверки и, при необходимости, восстановления файловых систем Linux. При этом она также может отображать и тип файловой системы на указанных разделах диска, например:

Способ №3: Использование команды lsblk

Команда lsblk отображает информацию о блочных устройствах. Добавив опцию -f , мы также получим и информацию о типе файловой системе:

Способ №4: Использование команды mount

Команда mount применяется для монтирования файловой системы в Linux. Её также можно использовать для монтирования ISO-образа, удаленной файловой системы Linux и многого другого. Чтобы узнать тип файловой системы, используйте следующую комбинацию:

Какую файловую систему выбрать для Linux

Если вы только переходите с Windows, то, наверное, уже привыкли, что вам доступна только одна файловая система — NTFS и выбирать просто нет из чего. Но в Linux ситуация совсем другая. Здесь существует огромное множество файловых систем и постоянно создаются новые.

В сегодняшней небольшой статье мы постараемся разобраться какую файловую систему выбрать для Linux, и какие вообще доступны варианты.

Выбор файловой системы для Linux

Все файловые системы можно разделить на два типа: это обычные файловые системы и файловые системы следующего поколения. К обычным файловым системам относится используемая в большинстве дистрибутивов Ext4, она имеет все необходимые для полноценной работы возможности, но не более того.

Файловые системы следующего поколения — это BtrFS, ZFS и другие им подобные. Кроме стандартных возможностей они добавляют такие интересные вещи как дедупликация данных, управление томами, размещение файловой системы на нескольких физических дисках, контрольные суммы для данных, прозрачное сжатие и шифрование, снимки состояния, а также многое другое. Несмотря на все эти преимущества, новые файловые системы ещё не всегда стабильны и не поддерживаются не во всех дистрибутивах, а многие из их возможностей просто не нужны обычным пользователям.

Если кратко отвечать на вопрос, какую файловую систему выбрать для Linux — то ответ — Ext4. Она разработана очень давно, но зато очень стабильна и проверена временем. Она используется по умолчанию во многих дистрибутивов, а её лимитов хватит с головой, как для домашних пользователей, так и для большинства серверов. Но эта файловая система относится к обычным. Если вы не хотите её использовать дальше мы рассмотрим несколько альтернатив, доступных для выбора в установщике Ubuntu.

1. Ext

Про семейство файловых систем Ext я больше не буду говорить в этой статье. Про всё можно подробно прочитать в статье Файловая система Ext4. Там рассказана история развития этой файловой системы, а также её плюсы и минусы. Для установки Linux лучше всего подойдёт файловая система Ext4 из-за её стабильности и огромному количеству руководств по настройке в интернете.

2. XFS

Файловая система XFS разработана в Silicon Graphics в 1994 году для операционной системы SGI IRX. Расшифровывается как eXtended File System. Для Linux она была портирована в 2001 и немного позже её начали использовать в Red Hat Enterprice Linux в качестве файловой системы по умолчанию. Хотя эту файловую можно отнести к обычным, она изначально была рассчитана на работу с большими дисками. Она очень похожа на Ext4, тоже поддерживает журналирование и не подвержена фрагментации, но её можно только увеличить, уменьшить раздел с этой файловой системой нельзя. Ещё XFS показывает хорошую производительность при работе с большими файлами, но медленее работает с большим количеством маленьких файлов по сравнению с другими файловыми системами.

3. JFS

Файловая система JFS или Journaled File System разработана компанией IBM для системы IBM AIX в 1990 году, а чуть позже она была портирована и для Linux. В отличие от Ext3, в которой был добавлен журнал для сохранения целостности файловой системы, JFS была изначально журналируемой. В журнале сохраняются только метаданные. Файловая система одинаково быстро работает с как с большими, так и с маленькими файлами, а ещё её также как и XFS нельзя уменьшить, только увеличить. Несмотря на то, что эта файловая система доступна в большинстве дистрибутивов, её редко используют, а значит и её разработка и выявление багов идет медленнее.

4. BtrFS

Мы добрались к первой файловой системе следующего поколения. Это BTree File System. Её разработал Крис Масон во время своей работы в компании Oracle в 2006 году. Она поддерживает множество интересных возможностей, таких как управление томами, снимки состояния, прозрачное сжатие и дефрагментацию в реальном времени. Файловая система разрабатывалась как качественная и новая альтернатива для файловых систем семейства Ext. Даже основной разработчик Ext4 Теодор Цо считает, что за Btrfs или подобной ей файловой системой будущее, а Ext4 рано или поздно останется в прошлом. Сейчас BtrFS используется по умолчанию в SUSE Linux, как в серверной, так и обычной редакции. Она уже считается стабильной, но многие всё ещё боятся её использовать.

5. ReiserFS

Файловую систему ReiserFS разработал Ганс Рейзер специально для Linux в 2001 году. В неё было включено множество возможностей недоступных для Ext4. Как и в Ext4 здесь есть журналирование либо только метаданных, либо вместе с данными. Поддерживается управление томами, есть возможность добавить кэширующий быстрый диск. ReiserFS — очень быстрая и умеет упаковывать несколько файлов в один блок, чтобы уменьшить использование памяти. Однако, разработка этой файловой системы была заброшена после того, как Ганс Райзер сел в тюрьму в 2008. Версия файловой системы Raiser4 всё ещё не попала в ядро, поэтому для использования на перспективу лучше выбрать Btrfs.

6. ZFS

ZFS была разработана для Solaris компанией Sun Microsystems и сейчас она принадлежит Oracle в 2005 году. Немного позже она была портирована для Linux и начиная с Ubuntu 16.04 доступна в установщике для использования в качестве корневой файловой системы. Она похожа на BtrFS, потому что поддерживает управление томами, контрольные суммы для всех данных, прозрачное сжатия и прозрачное шифрование. Её тоже можно отнести к файловым системам следующего поколения. По архитектуре, это 128 битная файловая система, в то же время как Ext4 — 64 битная. Поэтому лимиты у неё очень большие и в обозримом будущем мы к ним даже не приблизимся. Но Линус Торвальдс, создатель ядра Linux не советует использовать ZFS.

Выводы

Ещё в списке файловых систем установщика есть Swap и FAT, но обе эти файловые системы нельзя использовать для корневого раздела Linux. Первая используется для раздела подкачки и не предназначена для хранения файлов, а вторая — это старая файловая система от Microsoft, не поддерживающая многих необходимых атрибутов и возможностей.

Есть и другие файловые системы, например F2FS, разработанная специально для SSD, но они используются ещё реже. Для себя я вижу два варианта — это либо Btrfs, потому что она активно развивается, разработана для Linux и разработчики SUSE ей доверяют, а также Ext4, потому что очень стабильна и проверена временем. А какую файловую систему для Linux используете вы? Какие лучшие файловые системы Linux? Напишите в комментариях!

Обнаружили ошибку в тексте? Сообщите мне об этом. Выделите текст с ошибкой и нажмите Ctrl+Enter.

Выбираем файловую систему независимую от ОС

Всем привет. Недавно я задался вопросом как организовать обмен файлами между операционными системами. Предположим, я хочу установить сразу три основные ос на своём ноутбуке: линукс, виндовз и хакинтош. Каждая ос предназначается для своих задач: Линукс — для работы и программирования, винда — для игр и хак — просто для разных экспериментов.

Поскольку я создаю обучающие видео ролики о линуксе, мне удобнее работать именно на нём. Но монтировать хочется попробовать в «финальном вырезе». Уж очень мне приглянулась идея магнитной ленты времени.

Так вот, задача стоит такая: нужен раздел на системном накопителе, причём с такой файловой системой, которая поддерживается на чтение и запись всеми перечисленными операционками. На этом разделе будут храниться скачанные из интернета файлы и меж-операционные проекты.

Как такая задача решалась мной раньше? Раньше я использовал только винду с линуксом, поэтому задачи обмена с apple os не возникало. Конечно, хотелось использовать открытую и родную фс для линукса — ext4. Но на винде её смонтировать непросто. Нужно устанавливать бесплатный (но проприетарный) Paragon ExtFS for Windows. И ладно, если бы это работало, но к сожалению данное ПО повреждает вам раздел с линуксом. Напоролся пару раз, и всякое желание пользоваться этим по пропало.

А вот виндовая фс под линуксом читается и пишется без проблем. Нужно всего лишь установить ntfs-3g драйвер. Он работает в юзерспейсе. Файловая система проприетарная, но решение работает.

Теперь же я хочу использовать ещё и хакинтош, и хочется разобраться какие ещё есть варианты для решения этой задачи, кроме ntfs.

На самом деле вариантов немного. Давайте разберёмся, какие есть файловые системы, и какие из них являются более или менее универсальными.

Fat32 — всем известная древняя фс, является самой универсальной в плане переносимости, но и самой убогой в плане ограничений. Была разработана давно, не поддерживает файлы размером более 4 Гб. Проприетарная. Для моих задач не подходит.

Ntfs — родная фс для винды, проприетарщина. Линукс, как я уже писал выше, её поддерживает с помощью стороннего драйвера (ntfs-3g). Мак нативно её не понимает, хотя можно доустановить соответствующее по. Есть несколько вариантов, как платных, так и бесплатных. Ни один из них мне не нравится. ntfs-3g работает в userspace (с медленной скоростью), а платные решения — платные.

Hfs+ — одна из худших фс, когда либо созданных. Родная для мак ос, но нисколько не универсальная. Можно примонтировать на линуксе, а для винды опять же есть платные решения — в пролёте.

Ext4 — одна из правильных фс, родная для линукс. Но в плане монтирования в неродных ос — опять проблемы. За платные решения для хакинтоша и для винды опять просят денег. Есть и бесплатные решения, к примеру ext2fsd, но этот драйвер не умеет писать в ext4. В пролёте.

Udf — одна из правильных фс, поддерживается нативно всеми ос. Эта фс была бы лучшим вариантом, если бы не компания apple. Изначально udf создавалась для оптических носителей, но она может быть спокойно использована на обычном жёстком магнитном диске. НО! Из-за того, что яблочники не реализовали поддержку этой фс с раздела, вся задумка отменяется. Даже последняя мак ос Х поддерживает данную фс только если всё блочное устройство не имеет таблицы разделов. На гитхабе есть скрипт format-udf, который может подготовить носитель специальным образом: в начальном блоке данных прописывается mbr, говорящий что раздел начинается прямо там же где и сам mbr. Т.е. накопитель как бы одновременно и с таблицей разделов (то что понимает винда), и вроде как и без таблицы разделов. Этот способ предполагает что носитель будет внешний, а мне нужно сделать exchange раздел именно на внутреннем накопителе. Так что данный вариант тоже в пролёте.

exFat — проприетарщина, но нативно работает как в винде, так и в маке. Это очень хорошо. А что в линуксе?

Спрашивается, а почему тогда данный драйвер не поддерживается из коробки? Потому что его нет в ядре. Мердж этого кода (пусть и gpl-ного) в mainline — это по сути троян от мелких (из-за патентов). Торвальдс это понимает, и, понятное дело, ядро не отравит.

В линуксе монтировать exfat можно либо с помощью exfat-fuse драйвера, либо с помощью exfat-nofuse. Конечно, лучше nofuse, так как он будет работать быстрее. Но его придётся собирать каждый раз при обновлении ядра. Благо, для автоматизации этой задачи есть механизм dkms.

Подведём итог

Я останавливаюсь на exfat. Да, проприетарщина, но ничего не поделаешь. Зато всё нативно работает, и “танцы с бубном” отсутствуют: во всех трех операционных системах есть нативная поддержка и возможность поставить эту фс именно на раздел. Ограничения в 4 Гб нет. И в целом, это решение достаточно простое.

Надеюсь, вы узнали что-то новое для себя и выберите подходящий вариант исходя из ваших нужд.

Апдейт 4 февраля 2020:
Оказывается раздел с exfat невозможно ни растянуть, ни сжать. Причём даже на самой винде. Не учёл этот момент при выборе решения. Если нужно изменить размер раздела — придётся только бекапить данные в другое место и пересоздавать раздел уже с нужным размером.
С UDF в этом плане дела не лучше. Вот здесь лежит табличка, описывающая возможности по работе с разделами в gparted.

Sorry, you have been blocked

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

What can I do to resolve this?

You can email the site owner to let them know you were blocked. Please include what you were doing when this page came up and the Cloudflare Ray ID found at the bottom of this page.

Cloudflare Ray ID: 7d99dc8c6c9a24aa • Your IP: Click to reveal 88.135.219.175 • Performance & security by Cloudflare

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *